검색 : [ keyword: 지식 추론 ] (2)

뉴로 심볼릭 기반 규칙 유도 및 추론 엔진을 활용한 지식 완성 시스템

신원철, 박현규, 박영택

http://doi.org/10.5626/JOK.2021.48.11.1202

최근 지식 그래프의 불완전성 문제를 해결하기 위한 다양한 지식 완성 연구중 딥러닝 학습 방법과 로직 시스템의 장점을 결합한 NTP(Neural Theorem Prover)와 같은 연구가 기존 연구들에 비해 좋은 성능을 내고 있다. 하지만 NTP는 하나의 입력에 대한 예측 결과를 얻기 위해 지식 그래프의 모든 트리플이 연산에 관여하게 되므로 대용량 지식 그래프 처리에 한계가 있다. 본 논문에서는 NTP의 계산 복잡도 문제를 개선한 모델로부터 심볼의 벡터 표현을 학습하여 규칙을 유도하고, 추론 엔진을 사용하여 유도된 규칙으로부터 지식 추론을 수행할 수 있는 딥러닝 학습 방식과 로직 추론 방식의 통합시스템을 제안한다. 본 논문에서 사용한 규칙 생성모델의 규칙유도 성능 검증을 위해 NTP와 Nations, Kinship, UMLS 데이터 셋을 대상으로 유도된 규칙을 활용한 테스트 데이터 추론가능 여부를 비교하였으며, 대규모 지식그래프인 Kdata와 WiseKB를 사용한 실험에서는 추론 엔진을 통한 지식 추론 결과 실험에 사용된 지식 그래프에 비해 각각 Kdata는 30%, WiseKB는 95%증가된 지식 그래프를 얻을 수 있었다.

Spark 프레임워크를 적용한 대용량 SHIF 온톨로지 추론 기법

김제민, 박영택

http://doi.org/

지식 관리 시스템을 운영하기 위해서는 대량의 지식 정보를 자동으로 추론 및 관리하는 기술이 필요하다. 현재, 이러한 시스템의 대다수는 컴퓨터간의 지식 정보를 자동으로 교환하고 스스로 새로운 지식을 추론하기 위해 온톨로지를 적용하고 있다. 따라서 대용량의 온톨로지를 대상으로 새로운 정보를 추론하는 효율적인 기술이 요구되고 있다. 본 논문은 분산 클러스터의 메모리상에서 MapReduce와 유사한 작업을 수행하는 Spark 프레임워크를 적용하여, SHIF 수준으로 작성된 대용량의 온톨로지를 규칙 기반으로 추론하는 기술에 대해서 제안한다. 이에 본 논문은 다음 3 가지에 초점을 맞추어 설명을 한다. 클러스터내의 분산된 메모리상에서 대용량 추론을 실시하기 위해서, 먼저 각 추론 규칙에 따라 대용량의 온톨로지 트리플을 효과적으로 분류하여 적재하기 위한 자료구조, 두 번째 규칙간의 종속 관계와 상호 연관성에 따른 규칙 실행 순서와 반복 조건 정의, 마지막으로 규칙 실행에 필요한 명령을 정의하고 이러한 명령어를 실행하여 추론을 수행하는 알고리즘에 대해 설명한다. 제안하는 기법의 효율성을 검증하기 위해, 온톨로지 추론과 검색 속도를 평가하는 공식 데이터인 LUBM을 대상으로 실험을 수행하였다. 대표적인 분산 클러스터 기반 대용량 온톨로지 추론 엔진인 WebPie와 비교 실험한 결과, LUBM에 대해서 WebPie의 추론 처리량이 553 트리플/초 인데 비해 284배 개선된 157k 트리플/초의 성능 향상이 있었다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr