Digital Library[ Search Result ]
Improvement of Background Inpainting using Binary Masking of a Generated Image
Jihoon Lee, Chan Ho Bae, Seunghun Lee, Myung-Seok Choi, Ryong Lee, Sangtae Ahn
http://doi.org/10.5626/JOK.2024.51.6.537
Recently, image generation technology has been rapidly advancing in the field of deep learning. One of the most effective ways to represent images is by using text prompts to generate them. The performance of models that generate images using this technique is outstanding. However, it is not easy to naturally change specific parts of an image using only text prompts. This is considered a typical problem with conventional image generation models. Thus, in this study, we developed a background inpainting technique that extracts text for each area of an image and uses it as a basis to seamlessly change the background while preserving the objects in the image. In particular, the background transformation inpainting technique developed in this study has the advantage of not only transforming a single image but also rapidly transforming multiple images. Therefore, the proposed text prompt-based image style transfer can be used in fields with limited data for training, and the technique could enhance the performance of models through image augmentation.
Exploring Neural Network Models for Road Classification in Personal Mobility Assistants: A Comparative Study on Accuracy and Computational Efficiency
Gwanghee Lee, Sangjun Moon, Kyoungson Jhang
http://doi.org/10.5626/JOK.2023.50.12.1083
With the increasing use of personal mobility devices, the frequency of traffic accidents has also risen, with most accidents resulting from collisions with cars or pedestrians. Notably, the compliance rate of the traffic rules on the roads is low. Auxiliary systems that recognize and provide information about roads could help reduce the number of accidents. Since road images have distinct material characteristics, models studied in the field of image classification are suitable for application. In this study, we compared the performance of various road image classification models with parameter counts ranging from 2 million to 30 million, enabling the selection of the appropriate model based on the situation. The majority of the models achieved an accuracy of over 95%, with most models surpassing 99% in the top-2 accuracy. Of the models, MobileNet v2 had the fewest parameters while still exhibiting excellent performance and EfficientNet had stable accuracy across all classes, surpassing 90% accuracy.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr