Search : [ keyword: 크기 정규화 ] (2)

Improvement of Prostate Cancer Aggressiveness Prediction Based on the Deep Learning Model Using Size Normalization and Multiple Loss Functions on Multi-parametric MR Images

Yoon Jo Kim, Julip Jung, Sung Il Hwang, Helen Hong

http://doi.org/10.5626/JOK.2023.50.10.866

Prostate cancer is the second most common cancer in men worldwide, and it is essential to predict the aggressiveness of prostate cancer because the recurrence rate and the effectiveness of treatment vary depending on the aggressiveness. This study enhances the information on small tumors by applying size normalization to predict the aggressiveness of prostate cancer in multi-parametric MR imaging. Additionally, we propose the use of multiple loss functions to distinguish tumors with different aggressiveness while having a similar visual appearance. Experimental results show that the proposed model trained with size-normalized ADC maps achieves an accuracy of 76.28%, sensitivity of 76.81%, specificity of 75.86%, and an AUC of 0.77. Moreover, compared to the tumor-centered ADC maps, size-normalized ADC maps demonstrate improved performance in tumors smaller than 1.5 cm, with an accuracy of 76.47%, sensitivity of 90.91%, and specificity of 69.57%, corresponding to a significant improvement of 17.65%, 27.27%, and 13.05% respectively.

Human Activity Recognition using View-Invariant Features and Probabilistic Graphical Models

Hyesuk Kim, Incheol Kim

http://doi.org/

In this paper, we propose an effective method for recognizing daily human activities from a stream of three dimensional body poses, which can be obtained by using Kinect-like RGB-D sensors. The body pose data provided by Kinect SDK or OpenNI may suffer from both the view variance problem and the scale variance problem, since they are represented in the 3D Cartesian coordinate system, the origin of which is located on the center of Kinect. In order to resolve the problem and get the view-invariant and scale-invariant features, we transform the pose data into the spherical coordinate system of which the origin is placed on the center of the subject’s hip, and then perform on them the scale normalization using the length of the subject’s arm. In order to represent effectively complex internal structures of high-level daily activities, we utilize Hidden state Conditional Random Field (HCRF), which is one of probabilistic graphical models. Through various experiments using two different datasets, KAD-70 and CAD-60, we showed the high performance of our method and the implementation system.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr