Search : [ keyword: 텍스트마이닝 ] (2)

Metadata Extraction based on Deep Learning from Academic Paper in PDF

Seon-Wu Kim, Seon-Yeong Ji, Hee-Seok Jeong, Hwa-Mook Yoon, Sung-Pil Choi

http://doi.org/10.5626/JOK.2019.46.7.644

Recently, with a rapid increase in the number of academic documents, there has arisen a need for an academic database service to obtain information about the latest research trends. Although automated metadata extraction service for academic database construction has been studied, most of the academic texts are composed of PDF, which makes it difficult to automatically extract information. In this paper, we propose an automatic metadata extraction method for PDF documents. First, after transforming the PDF into XML format, the coordinates, size, width, and text feature in the XML markup token are extracted and constructed as a vector form. Extracted feature information is analyzed using Bidirectional GRU-CRF, which is an deep learning model specialized for sequence labeling, and finally, metadata are extracted. In this study, 10 kinds of journals among various domestic journals were selected and a training set for metadata extraction was constructed and experimented using the proposed methodology. As a result of extraction experiment on 9 kinds of metadata, 88.27% accuracy and 84.39% F1 performance was obtained.

Automatic Construction of Reduced Dimensional Cluster-based Keyword Association Networks using LSI

Han-mook Yoo, Han-joon Kim, Jae-young Chang

http://doi.org/10.5626/JOK.2017.44.11.1236

In this paper, we propose a novel way of producing keyword networks, named LSI-based ClusterTextRank, which extracts significant key words from a set of clusters with a mutual information metric, and constructs an association network using latent semantic indexing (LSI). The proposed method reduces the dimension of documents through LSI, decomposes documents into multiple clusters through k-means clustering, and expresses the words within each cluster as a maximal spanning tree graph. The significant key words are identified by evaluating their mutual information within clusters. Then, the method calculates the similarities between the extracted key words using the term-concept matrix, and the results are represented as a keyword association network. To evaluate the performance of the proposed method, we used travel-related blog data and showed that the proposed method outperforms the existing TextRank algorithm by about 14% in terms of accuracy.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr