디지털 라이브러리[ 검색결과 ]
K-means 클러스터링을 사용한 SVD 기반의 교차 도메인 추천
http://doi.org/10.5626/JOK.2022.49.5.360
교차 도메인 추천은 다른 도메인에 있는 관련 사용자 정보 데이터와 아이템 데이터 공유를 통해 해결하고자 하는 방법이다. 사용자 중복이 많은 온라인 쇼핑몰이나 유튜브(YouTube) 또는 넷플릭스 (NetFlix)와 같이 멀티미디어 서비스 컨텐츠에서 주로 사용된다. K-means 클러스터링을 통해 사용자 데이터와 평점을 기반으로 군집화를 실시하여 임베딩을 생성한다. 그 결과를 다층 신경망(Multi Layer Neural Network)를 통해 학습시킨 후, 사용자 만족도를 예측한다. 그 후 협업 필터링 기법인 행렬 분해(matrix factorization)를 이용하여 사용자에게 맞는 아이템들을 추천한다. 이 연구를 통해 추천함으로써 더 적은 시간적 비용으로 초기 사용자 문제에 대해 예측이 가능하고, 사용자들의 만족도를 높일 수 있다는 결과를 실험을 통해 보여주었다.
콜드 스타트 문제 완화를 위한 가중치 기반 다중 도메인 추천 시스템
http://doi.org/10.5626/JOK.2021.48.10.1090
추천 시스템은 사용자의 기록과 항목 선호도를 기반으로 해당 사용자가 선호할 것으로 예측되는 항목을 추천한다. 추천 시스템에는 기존 사용자의 정보를 기반으로 비슷한 성향의 사용자 평점을 예측하는 협업 필터링 방식이 있다. 사용자의 성향을 알기 위해 구매 이력과 같은 정보가 필요한데 이 정보가 없을 때 예측이 어려워지는데 이를 콜드 스타트 문제(cold-start problem)라 한다. 본 논문에서는 특정 도메인에 아무 정보가 없는 초기 사용자를 위해 사용자가 다른 도메인에 남긴 평점 정보를 기반으로 새로운 도메인의 평점 정보를 예측하는 다중 도메인 추천 시스템을 제안한다. 이때, 여러 보조 도메인으로 예측한 평점 정보의 신뢰도를 극대화하기 위해 각 보조 도메인의 가중치를 계산하는 방법을 제안하고 실험을 통해 성능을 검증한다. 그 결과, 전통적인 추천 알고리즘을 다중 도메인에 단순 적용했을 때보다 가중치 기반 추천 알고리즘을 활용했을 때 더 나은 추천 성능을 보이는 것을 확인한다.
항목 인기도 편향 관점에서의 잡음제거 오토인코더의 효과
http://doi.org/10.5626/JOK.2021.48.5.575
잡음제거 오토인코더는 추천 시스템에서 최근 흔히 사용되고 있는 모델이다. 이 모델은 입력에 잡음을 주어 학습시키는 오토인코더의 신경망 기반 추천 모델로 오토인코더에 비해 높은 정확도를 보인다. 본 논문에서는 잡음제거 오토인코더의 학습 과정을 이해하기 위해서, 항목의 인기도 편향 관점에서 잡음의 효과를 분석한다. 분석을 위해 우리는 다음의 두 가지 방법으로 실험을 설계한다. 우선, 오토인코더에 잡음을 주는 방법으로 학습된 항목 벡터의 L2 노름(L2-norm)의 변화를 관찰한다. 다음으로는, 항목의 인기도에 의해 일차적으로 추출된 항목에만 잡음을 주는 방법을 통해, 잡음제거 오토인코더의 성능 향상 효과와 항목의 인기도간 관련성을 분석한다. 실험결과를 통해 인기도에 의해 생긴 항목 벡터 노름의 분산의 크기가 잡음에 의해 줄어드는 것을 확인하였으며, 또한 인기도가 높은 항목에 잡음을 줄 때 정확도 향상에 도움이 되는 것을 확인하였다.
오토 인코더 기반 추천 시스템을 위한 잠재 표현 학습 방법
http://doi.org/10.5626/JOK.2020.47.2.207
온라인 상의 상품의 수가 기하 급수적으로 증가함에 따라 고객이 스스로 원하는 상품을 찾는 것이 어려워졌다. 적절한 상품의 추천은 고객의 잠재적 수요를 만족시키고 판매자의 이윤을 증대시키기에 그 중요성이 상당히 크다. 최근에는 인공신경망을 활용한 차원 축소 기법인 오토 인코더 기반의 협업 필터링 방법이 성능 면에서 두각을 나타내었다. 하지만, 오토 인코더의 잠재 표현 분포 조정을 통해 추천 성능을 향상시키는 방법은 아직 많이 연구되지 않았다. 본 연구에서는 오토 인코더 기반 협업 필터링 방법에 결합되어 상품 추천 성능을 더욱 향상시키는 밀집 잠재 표현 학습방법 (DenseLR)을 제안한다. 본 연구의 핵심 아이디어는 유저 구매 정보 벡터들의 잠재 표현을 효과적으로 밀집 시킴에 따라 축소 차원에서의 협업 필터링 효과를 강화하는 것이다. 3가지 실제 구매 데이터 셋에 대해 기존 최첨단 연구들과 성능비교실험을 진행한 결과 제안 방법이 모든 데이터 셋에 대해 가장 높은 성능을 보였다.
추천 시스템에서의 데이터 임퓨테이션 분석
http://doi.org/10.5626/JOK.2017.44.12.1333
추천 시스템이란 사용자가 좋아할만한 개인화된 상품을 사용자에게 제안하는 것이다. 최근 상품 수의 증가로 추천 시스템의 중요성이 날로 커지고 있지만, 데이터 희소성 문제는 여전히 추천 시스템의 대표적인 문제로 남아있다. 데이터 희소성 문제는 사용자가 전체 상품 중 일부의 상품에만 평점을 부여하여, 사용자와 상품 관계를 정확히 이해하기 힘든 것을 말한다. 이를 해결하기 위해 가장 여러 가지 접근법이 있는 그 중 대표적인 것인 데이터 임퓨테이션이다. 데이터 임퓨테이션은 사용자가 평가하지 않은 상품의 평점을 추론해 평점 행렬에 채우는 방법이다. 하지만 기존 데이터 임퓨테이션 방법은 사용자가 평가하지 않은 상품에 대한 몇 가지 특성을 놓치고 있다. 본 논문에서는 기존 방법의 한계점을 정의하고, 이를 개선하는 방안 3가지를 제안한다.