검색 : [ keyword: 확률 모델 ] (3)

동적 윈도우를 갖는 조건부확률 모델을 이용한 한국어 문맥의존 철자오류 교정 규칙의 재현율 향상

최현수, 권혁철, 윤애선

http://doi.org/

한국어 맞춤법 검사기가 교정하는 오류어의 유형은 크게 단순 철자오류와 문맥의존 철자오류로 구분할 수 있다. 이 중 문맥의존 철자오류는 어절(word)단위로 봤을 때는 올바르지만, 문맥을 고려하였을 때 오류가 되는 유형으로, 교정 난도가 매우 높다. 문맥의존 철자오류는 글을 쓰는 사람들도 자주 저지르는 오류이므로, 이를 잘 검색하여 정확하게 교정하는 것이 맞춤법 검사기의 사용자가 갖는 신뢰도에 큰 영향을 미친다. 높은 정확도가 매우 중요하므로, 문맥의존 철자오류의 교정 방법은 대부분 규칙에 기반한다. 반대 급부로 재현율이 매우 낮다는 단점을 갖는다. 문맥의존 철자오류의 교정에서 재현율을 높이기 위한 방법은 크게 언어지식을 이용하여 규칙을 일반화하는 방법과 통계 정보에 기반을 하여 공기 어휘의 제약 조건을 확장하는 방법으로 나뉠 수 있다. 기존 연구는 언어지식을 이용하여 규칙을 일반화하는 다양한 방식을 연구했으나, 최고 성능이 평균 정확도 95.19%, 평균 재현율 37.56%을 보였다. 본 논문에서는 통계정보에 기반한 규칙의 확장 방식을 제안한다. 동적 윈도우를 갖는 조건부확률 모델을 이용한 방법이며, 최고 성능은 평균 정확도 97.23%, 평균 재현율 50.50%을 보여주었다.

통계적 얼굴 모델을 이용한 부분적으로 가려진 얼굴 검출

서정인, 박혜영

http://doi.org/

얼굴 검출은 입력 영상에서 얼굴 영역을 추출하는 과정으로, 얼굴 인식 및 인증 과정의 속도와 정확도를 효율적으로 높여주는 작업이며 그 응용분야도 다양하다. 기존에 개발된 얼굴 검출 방법들은 얼굴의 전체 형태를 바탕으로 검출을 수행하기 때문에 착용물 또는 신체 부위로 인해 일부가 가려져 폐색된 얼굴에 대해서는 그 검출 성능이 크게 하락할 수 있다. 이러한 문제를 해결하기 위하여 이 논문에서는 얼굴 영상을 지역적 특징 기술자의 집합으로 표현하고, 이에 대한 통계적 확률 모델을 추정한 뒤 이를 이용하여 입력 영상에서 얼굴 영역을 추출하는 방법을 제안한다. AR 데이터베이스와 Caltech 데이터베이스를 이용한 실험을 통해 제안하는 얼굴 검출 방법이 일부가 폐색된 얼굴 검출에 효과적임을 확인하였다.

한국어 형태소 분석을 위한 음절 단위 확률 모델

심광섭

http://doi.org/

본 논문에서는 음절 단위의 한국어 형태소 분석 방법에 적용할 수 있는 세 가지 확률 모델을 제안하고, 품사 태깅 말뭉치를 이용하여 각 확률 모델의 성능을 평가한다. 성능 평가를 위해 1,000만 어절규모의 세종 말뭉치를 10 개의 세트로 나누고 10 배수 교차 검증 결과 98.4%의 정답 제시율을 얻을 수 있었다. 제안된 확률 모델은 각 음절에 대하여 품사 태그를 먼저 부착한 후 원형 복원 및 형태소 생성을 하기 때문에 원형 복원을 먼저 하는 기존 확률 모델에 비하여 탐색 공간이 크게 줄어들어 형태소 분석 과정이 훨씬 간결하고 효율적이어서 분석 속도가 기존의 초당 수 백 어절에서 14만 7천 어절로 약 174배 가량 향상시킬 수 있었다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr