디지털 라이브러리[ 검색결과 ]
텍스트 부가 정보를 활용한 선형 기반 순차적 추천 모델
http://doi.org/10.5626/JOK.2025.52.6.529
최근 순차적 추천 시스템에서는 부가 정보를 활용한 연구가 활발히 시도되고 있다. 대부분의 접근은 언어 모델과 심층 신경망을 결합에 집중하지만, 이는 높은 연산 비용과 지연 시간 문제를 초래한다. 비신경망 기반의 선형 추천 모델은 효율적인 대안이 될 수 있으나, 부가 정보를 효과적으로 활용하는 방법에 대한 연구는 부족하다. 본 연구는 선형 모델에서 부가 정보를 효과적으로 활용할 수 있는 프레임워크를 제안한다. 텍스트 정보는 선형 모델의 학습에 직접 사용되기 어려우므로, 사전 학습된 텍스트 인코더를 통해 항목의 텍스트를 밀집 벡터로 변환한다. 이들은 풍부한 정보를 담고 있지만 항목 간 연관성은 이해하지 못한다. 이를 해결하기 위해 그래프 합성곱을 적용해 강화된 항목 표현을 얻는다. 얻어진 항목 표현은 사용자-항목 상호작용 행렬과 함께 선형 모델 학습에 활용된다. 광범위한 실험을 통해 제안 방법이 전체 성능을 향상하고, 특히 비인기 항목의 성능 개선에 효과적임을 확인하였다.
노년층 우울감 예측을 위한 시맨틱 네트워크기반 도메인 지식과 그래프 컨볼루션 결합
http://doi.org/10.5626/JOK.2023.50.3.243
노년층의 우울감은 매해 3억명의 환자와 80만명의 자살자가 발생하는 전세계적인 문제로, 이동성과 밀접한 연관이 있는 생활패턴으로부터 조기 탐지하는 것이 중요하다. 센싱정보 기반의 그래프 컨볼루션 신경망이 유망하기는 하나, 복잡한 센싱정보 시퀀스로부터 표현되는 고수준 행동을 표현하는 것이 필요하다. 본 논문에서는 추가적인 전문가 지식을 활용하여 노년층의 일상생활을 구조화하는 시맨틱 네트워크를 구축하고, 저수준 센싱 로그 그래프와 상호 보완적으로 이용하기 위한 그래프 컨볼루션 모델을 제안한다. 제안하는 방법은 ㈜DNX가 제공한 69명의 독거노인에 대한 800시간의 실제 데이터로 교차실험한 결과, 최신의 딥러닝 모형 대비 최고의 우울감 예측 성능을 달성하였다. 특히 기존 모델 대비 28.86%의 성능 개선을 보임으로써 시맨틱 네트워크로의 추론과 그래프 컨볼루션 모델의 타당성을 검증하였다.
정교한 이웃 노드 선택법을 활용한 그래프 합성곱 네트워크
http://doi.org/10.5626/JOK.2019.46.11.1193
그래프 합성곱 네트워크(GCNs)는 합성곱 구조를 활용하여 주변 노드들의 정보를 종합하는 방식으로 대상 노드의 표현력을 높인다. 높은 성능을 보이기 위해서는 우선적으로 대상 노드에게 필요한 정보를 전달할 수 있는 주변 노드를 선별하고, 이후 학습시 적절한 필터(filter) 값을 습득하는 과정이 수반되어야한다. 최근 GCNs 알고리즘들은 1-hop 거리의 노드들을 선택하는 등의 비교적 간단한 이웃 노드정의를 활용하고 있다. 이러한 경우 불필요한 정보가 대상 노드에 전파되어 성능을 저하하는 문제가 발생한다. 본 논문에서는 대상 노드와 주변 노드간의 유사도 계산을 통해 유효한 이웃 노드를 선별하여 활용하는 GCN 알고리즘을 제안한다.