디지털 라이브러리[ 검색결과 ]
뉴로 심볼릭 기반 규칙 유도 및 추론 엔진을 활용한 지식 완성 시스템
http://doi.org/10.5626/JOK.2021.48.11.1202
최근 지식 그래프의 불완전성 문제를 해결하기 위한 다양한 지식 완성 연구중 딥러닝 학습 방법과 로직 시스템의 장점을 결합한 NTP(Neural Theorem Prover)와 같은 연구가 기존 연구들에 비해 좋은 성능을 내고 있다. 하지만 NTP는 하나의 입력에 대한 예측 결과를 얻기 위해 지식 그래프의 모든 트리플이 연산에 관여하게 되므로 대용량 지식 그래프 처리에 한계가 있다. 본 논문에서는 NTP의 계산 복잡도 문제를 개선한 모델로부터 심볼의 벡터 표현을 학습하여 규칙을 유도하고, 추론 엔진을 사용하여 유도된 규칙으로부터 지식 추론을 수행할 수 있는 딥러닝 학습 방식과 로직 추론 방식의 통합시스템을 제안한다. 본 논문에서 사용한 규칙 생성모델의 규칙유도 성능 검증을 위해 NTP와 Nations, Kinship, UMLS 데이터 셋을 대상으로 유도된 규칙을 활용한 테스트 데이터 추론가능 여부를 비교하였으며, 대규모 지식그래프인 Kdata와 WiseKB를 사용한 실험에서는 추론 엔진을 통한 지식 추론 결과 실험에 사용된 지식 그래프에 비해 각각 Kdata는 30%, WiseKB는 95%증가된 지식 그래프를 얻을 수 있었다.
Distributed Assumption-Based Truth Maintenance System for Scalable Reasoning
Batselem Jagvaral, Young-Tack Park
가정기반진리관리 시스템(ATMS)은 추론 시스템의 추론 과정을 저장하고 비단조추론을 지원할 수 있는 도구이다 또한 의존기반 backtracking을 지원하므로 매우 넓은 공간 탐색 문제를 해결 할 수 있는 강력한 도구이다. 모든 추론 과정을 기록하고, 특정한 컨텍스트에서 지능형시스템의 Belief를 매우 빠르게 확인하고 비단조 추론 문제에 대한 해결책을 효율적으로 제공할 수 있게 한다. 그러나 최근 데이터의 양이 방대해지면서 기존의 단일 머신을 사용하는 경우 문제 해결 프로그램의 대용량의 추론과정을 저장하는 것이 불가능하게 되었다. 대용량 데이터에 대한 문제 해결 과정을 기록하는 것은 많은 연산과 메모리 오버헤드를 야기한다. 이러한 단점을 극복하기 위해 본 논문에서는 Apache Spark 환경에서 functional 및 객체지향 방식 기반의 점진적 컨텍스트 추론을 유지할 수 있는 방법을 제안한다.. 이는 가정(Assumption)과 유도과정을 분산 환경에 저장하며, 실체화된 대용량 데이터셋의 변화를 효율적으로 수정가능하게 한다. 또한 ATMS의 Label, Environment를 분산 처리하여 대규모의 추론 과정을 효과적으로 관리할 수 있는 방안을 제시하고 있다. 제안하는 시스템의 성능을 측정하기 위해 5개의 노드로 구성된 클러스터에서 LUBM 데이터셋에 대한 OWL/RDFS 추론을 수행하고, 데이터의 추가, 설명, 제거에 대한 실험을 수행하였다. LUBM2000에 대하여 추론을 수행한 결과 80GB데이터가 추론되었고, ATMS에 적용하여 추가, 설명, 제거에 대하여 수초 내에 처리하는 성능을 보였다.