Digital Library[ Search Result ]
Construction of Korean Knowledge Base Based on Machine Learning from Wikipedia
Seok-won Jeong, Maengsik Choi, Harksoo Kim
The performance of many natural language processing applications depends on the knowledge base as a major resource. WordNet, YAGO, Cyc, and BabelNet have been extensively used as knowledge bases in English. In this paper, we propose a method to construct a YAGO-style knowledge base automatically for Korean (hereafter, K-YAGO) from Wikipedia and YAGO. The proposed system constructs an initial K-YAGO simply by matching YAGO to info-boxes in Wikipedia. Then, the initial K-YAGO is expanded through the use of a machine learning technique. Experiments with the initial K-YAGO shows that the proposed system has a precision of 0.9642. In the experiments with the expanded part of K-YAGO, an accuracy of 0.9468 was achieved with an average macro F1-measure of 0.7596.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr