검색 : [ keyword: Life Logging ] (2)

노년층 우울감 예측을 위한 시맨틱 네트워크기반 도메인 지식과 그래프 컨볼루션 결합

부석준, 박경원, 조성배

http://doi.org/10.5626/JOK.2023.50.3.243

노년층의 우울감은 매해 3억명의 환자와 80만명의 자살자가 발생하는 전세계적인 문제로, 이동성과 밀접한 연관이 있는 생활패턴으로부터 조기 탐지하는 것이 중요하다. 센싱정보 기반의 그래프 컨볼루션 신경망이 유망하기는 하나, 복잡한 센싱정보 시퀀스로부터 표현되는 고수준 행동을 표현하는 것이 필요하다. 본 논문에서는 추가적인 전문가 지식을 활용하여 노년층의 일상생활을 구조화하는 시맨틱 네트워크를 구축하고, 저수준 센싱 로그 그래프와 상호 보완적으로 이용하기 위한 그래프 컨볼루션 모델을 제안한다. 제안하는 방법은 ㈜DNX가 제공한 69명의 독거노인에 대한 800시간의 실제 데이터로 교차실험한 결과, 최신의 딥러닝 모형 대비 최고의 우울감 예측 성능을 달성하였다. 특히 기존 모델 대비 28.86%의 성능 개선을 보임으로써 시맨틱 네트워크로의 추론과 그래프 컨볼루션 모델의 타당성을 검증하였다.

Quantified Lockscreen: 감정 마이닝과 자기정량화를 위한 개인화된 표정인식 및 모바일 잠금화면 통합 어플리케이션

김성실, 박준수, 우운택

http://doi.org/

잠금화면은 현대인들이 모바일 플랫폼에서 가장 자주 대면하는 인터페이스 중 하나이다. 조사에 따르면 스마트폰 사용자들은 일일 평균 150번 잠금해제를 수행하지만[1], 패턴인식, 비밀번호와 같은 잠금화면 인터페이스등은 보안 및 인증의 목적을 제외하곤 별 다른 이익을 제공하지 못하는 것이 현 실정이다. 본 논문에서는 보안용도의 기존 잠금화면을 전방 카메라를 활용한 얼굴 및 표정인식 어플리케이션으로 대체하여 표정 데이터를 수집한 뒤 실시간 표정 및 감정 변화 피드백을 제공하는 인터페이스를 제시한다. 본 연구에선 Quantified Lockscreen 어플리케이션을 통한 실험을 통해 1) 잠금화면을 활용한 비침습적인 인터페이스를 통해 연속적인 표정데이터 획득과 감정패턴을 분석할 수 있는 것을 검증했으며 2) 개인화된 학습 및 분석으로 표정인식 및 감정 검출의 정확도를 개선하였으며 3) 표정으로부터 추론된 감정 데이터의 타당성을 강화하기 위한 양괄식 검증기법을 도입하여 감정 검출의 다중채널 및 다중입력 방법론의 가능성을 확인하였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr