Digital Library[ Search Result ]
An Abnormal Activity Monitoring System Using Sensors and Video
Sang-soo Kim, Sun-woo Kim, Yeon-sung Choi
In this paper, we presents a system to ensure the safety of residents through appropriate action or alarm in case the residents occurs an emergency situation and abnormal activity. We collect and analysis real-time data of living environment of the residents using video and sensor. The existing system have been determined by using only the sensor data it have several problems. Our system attach camera to solve the existing system problem. We use weighted difference image and motion vector. The existing system, it takes about 48 hours to determine that an abnormal activity occurs. However, our system takes less than 1 hour.
Improved Prediction Structure and Motion Estimation Method for Multi-view Video Coding
Multi-view video is obtained by capturing one three-dimensional scene with many cameras at different positions. The computational complexity of multi view video coding increases in proportion to the number of cameras. To reduce computational complexity and maintain the image quality, improved prediction structure and motion estimation method is proposed in this paper. The proposed prediction structure exploits an average distance between the current picture and its reference pictures. The proposed prediction structure divides every GOP into several groups to decide the maximum index of hierarchical B layer and the number of pictures of each B layer. And the proposed motion estimation method uses a hierarchical search strategy. This strategy method consists of modified diamond search pattern, progressive diamond search pattern and modified raster search pattern. Experiment results show that the complexity reduction of the proposed prediction structure and motion estimation method over JMVC (Joint Multiview Video Coding) reference model using hierarchical B pictures of Fraunhofer-HHI and TZ search method can be up to 40~70% while maintaining similar video quality and bit rates.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr