Search : [ keyword: Support Vector Machine ] (6)

Effective Korean Speech-act Classification Using the Classification Priority Application and a Post-correction Rules

Namhoon Song, Kyoungman Bae, Youngjoong Ko

http://doi.org/

A speech-act is a behavior intended by users in an utterance. Speech-act classification is important in a dialogue system. The machine learning and rule-based methods have mainly been used for speech-act classification. In this paper, we propose a speech-act classification method based on the combination of support vector machine (SVM) and transformation-based learning (TBL). The user"s utterance is first classified by SVM that is preferentially applied to categories with a low utterance rate in training data. Next, when an utterance has negative scores throughout the whole of the categories, the utterance is applied to the correction phase by rules. The results from our method were higher performance over the baseline system long with error-reduction.

Perceptual Color Difference based Image Quality Assessment Method and Evaluation System according to the Types of Distortion

Jee-Yong Lee, Young-Jin Kim

http://doi.org/

A lot of image quality assessment metrics that can precisely reflect the human visual system (HVS) have previously been researched. The Structural SIMilarity (SSIM) index is a remarkable HVS-aware metric that utilizes structural information, since the HVS is sensitive to the overall structure of an image. However, SSIM fails to deal with color difference in terms of the HVS. In order to solve this problem, the Structural and Hue SIMilarity (SHSIM) index has been selected with the Hue, Saturation, Intensity (HSI) model as a color space, but it cannot reflect the HVS-aware color difference between two color images. In this paper, we propose a new image quality assessment method for a color image by using a CIE Lab color space. In addition, by using a support vector machine (SVM) classifier, we also propose an optimization system for applying optimal metric according to the types of distortion. To evaluate the proposed index, a LIVE database, which is the most well-known in the area of image quality assessment, is employed and four criteria are used. Experimental results show that the proposed index is more consistent with the other methods.

Sensor Selection Strategies for Activity Recognition in a Smart Environment

Sungdo Gu, Kyung-Ah Sohn

http://doi.org/

The recent emergence of smart phones, wearable devices, and even the IoT concept made it possible for various objects to interact one another anytime and anywhere. Among many of such smart services, a smart home service typically requires a large number of sensors to recognize the residents’ activities. For this reason, the ideas on activity recognition using the data obtained from those sensors are actively discussed and studied these days. Furthermore, plenty of sensors are installed in order to recognize activities and analyze their patterns via data mining techniques. However, if many of these sensors should be installed for IoT smart home service, it raises the issue of cost and energy consumption. In this paper, we proposed a new method for reducing the number of sensors for activity recognition in a smart environment, which utilizes the principal component analysis and clustering techniques, and also show the effect of improvement in terms of the activity recognition by the proposed method.

Competition Relation Extraction based on Combining Machine Learning and Filtering

ChungHee Lee, YoungHoon Seo, HyunKi Kim

http://doi.org/

This study was directed at the design of a hybrid algorithm for competition relation extraction. Previous works on relation extraction have relied on various lexical and deep parsing indicators and mostly utilize only the machine learning method. We present a new algorithm integrating machine learning with various filtering methods. Some simple but useful features for competition relation extraction are also introduced, and an optimum feature set is proposed. The goal of this paper was to increase the precision of competition relation extraction by combining supervised learning with various filtering methods. Filtering methods were employed for classifying compete relation occurrence, using distance restriction for the filtering of feature pairs, and classifying whether or not the candidate entity pair is spam. For evaluation, a test set consisting of 2,565 sentences was examined. The proposed method was compared with the rule-based method and general relation extraction method. As a result, the rule-based method achieved positive precision of 0.812 and accuracy of 0.568, while the general relation extraction method achieved 0.612 and 0.563, respectively. The proposed system obtained positive precision of 0.922 and accuracy of 0.713. These results demonstrate that the developed method is effective for competition relation extraction.

Learning Multiple Instance Support Vector Machine through Positive Data Distribution

Joong-Won Hwang, Seong-Bae Park, Sang-Jo Lee

http://doi.org/

This paper proposes a modified MI-SVM algorithm by considering data distribution. The previous MI-SVM algorithm seeks the margin by considering the “most positive” instance in a positive bag. Positive instances included in positive bags are located in a similar area in a feature space. In order to reflect this characteristic of positive instances, the proposed method selects the “most positive” instance by calculating the distance between each instance in the bag and a pivot point that is the intersection point of all positive instances. This paper suggests two ways to select the “most positive” pivot point in the training data. First, the algorithm seeks the “most positive” pivot point along the current predicted parameter, and then selects the nearest instance in the bag as a representative from the pivot point. Second, the algorithm finds the “most positive” pivot point by using a Diverse Density framework. Our experiments on 12 benchmark multi-instance data sets show that the proposed method results in higher performance than the previous MI-SVM algorithm.

Creating Level Set Trees Using One-Class Support Vector Machines

Gyemin Lee

http://doi.org/

A level set tree provides a useful representation of a multidimensional density function. Visualizing the data structure as a tree offers many advantages for data analysis and clustering. In this paper, we present a level set tree estimation algorithm for use with a set of data points. The proposed algorithm creates a level set tree from a family of level sets estimated over a whole range of levels from zero to infinity. Instead of estimating density function then thresholding, we directly estimate the density level sets using one-class support vector machines (OC-SVMs). The level set estimation is facilitated by the OC-SVM solution path algorithm. We demonstrate the proposed level set tree algorithm on benchmark data sets.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr