검색 : [ keyword: Time Series Data ] (5)

조기 예측을 위한 시계열 데이터 불균형 해소 기법

안응선, 권태형, 김도국

http://doi.org/10.5626/JOK.2025.52.7.593

시계열 예측은 관측된 시계열 데이터를 분석하여 미래의 값을 예측하는 중요한 문제다. 그러나, 데이터가 불균형할 경우, 모델의 성능이 저하되고 예측 결과에 편향이 발생할 수 있다. 이를 해결하기 위해 최근 다양한 딥러닝 기법과 데이터 증강 방법들이 연구되고 있지만, 많은 연구들이 불균형 문제와 시계열 특성을 동시에 고려하지 못하여 근본적인 문제를 해결하지 못하고 있다. 본 연구에서는 시간적 패턴을 활용하여 샘플을 생성하는 조기 예측을 위한 방법을 제안한다. 제안된 기법은 긍정 및 부정 클래스를 효과적으로 구분할 수 있는 시점을 선정하여, 더 먼 시차에 대한 예측도 가능하게 한다. 본 연구에서 제안된 방법은 기존의 방법들보다 우수한 성능을 보였으며, 더 멀리 있는 시차에 대한 조기 예측의 가능성을 입증하였다.

특징 요약을 통한 공기조화 시뮬레이션 데이터의 혼합형 다변량 시계열 군집화 품질 향상

서하린, 서영균

http://doi.org/10.5626/JOK.2025.52.5.424

기존 다변량 시계열 데이터 군집 분석 방법은 정보의 손실을 초래하여 군집화 성능 및 해석 가능성이 저하되는 문제가 있다. 더욱이, 대부분의 기존 기법들은 수치형 변수에 초점을 맞추고 있어, 실-세계에서 흔한 혼합형 다변량 시계열 데이터셋에 적용하기 어렵다. 이러한 문제를 해결하기 위해, 본 논문은 시계열 데이터를 대표적인 특징으로 요약하여 해석 가능성을 높이는 새로운 혼합형 다변량 시계열 데이터 군집 분석 기법을 제안한다. 제안하는 기법은 혼합된 형을 갖는 다변량 시계열 데이터를 군집화하기 위해 특징을 요약한다는 점에서 기존 방법과 근본적으로 다르다. 우리는 두 개의 공기조화 시뮬레이션 데이터셋(MZVAV-1과 MZVAV-2-1)에 대해 세 개의 군집화 평가 지표를 사용하여 제안된 방법을 기존 기법과 비교 평가하였다. 실험 결과 제안한 방법은 MZVAV-1에서 지표-클러스터 개수 조합의 61% 이상, MZVAV-2-1에서 40% 이상의 군집화 품질에서 기존 기법보다 우수한 성능을 보였다. 이러한 결과는 제안한 방법이 혼합형 시계열 데이터를 위한 군집화 성능 및 해석 가능성을 상당히 개선할 수 있음을 확인시켜 준다.

센서별 시간지연 교차 상관관계를 이용한 GCN 기반의 시계열 데이터 이상 탐지 방법

이강우, 김윤영, 정성원

http://doi.org/10.5626/JOK.2023.50.9.805

시계열 데이터를 통한 장비 이상 탐지는 더 큰 피해를 방지하고 생산성 향상에 기여할 수 있어 매우 중요한 과제이다. 이와 관련하여 시계열 데이터 이상 탐지에 대한 연구가 활발히 진행되고 있지만, 다음과 같은 제약사항들이 있다. 첫째, 센서 간 상관관계를 분석하지 않기 때문에 불필요한 허위 알람이 발생한다. 둘째, 센서 간 상관관계를 분석하기 위해 완전 그래프로 모델링하고 GAT(Graph Attention Networks)를 적용하였으나, 불필요한 연산의 증가로 많은 분석시간이 소요된다. 본 논문에서는 위의 제약사항을 해결하기 위해 SC-GCNAD(Sensor-specific Correlation GCN Anomaly Detection)를 제안한다. SC-GCNAD는 시계열 데이터의 특징을 반영한 TLCC(Time Lagged Cross Correlation)를 적용하여 정확한 센서별 상관관계를 분석하고, 상관관계 표현력이 뛰어난 GCN(Graph Convolutional Networks)을 활용한다. 그 결과 기존 모델 대비 F1-Score는 최대 6.37% 향상하고, 분석시간은 최대 95.31% 단축한다.

시계열 access log data를 이용한 IT 인프라 이상징후 감지 앙상블 모델

김정원, 최호진

http://doi.org/10.5626/JOK.2021.48.9.1035

대규모 IT 서비스를 운영하는 곳에서 단지 하나의 시스템을 관리하는 경우는 매우 드물다. 물론 관제를 전담하는 조직이 있다면 서비스의 이상유무에 대해 모니터링이 가능하겠지만, 관제 담당자는 각 서비스의 업무 지식과 도메인에 대해 잘 알지 못하기 때문에, 특정 서비스의 비정상 여부를 판단하기 어려운 것이 사실이다. 따라서 각 서비스마다의 특성을 분석하고 패턴을 학습하여 이상여부를 판단하는 탐지 모델의 needs가 나날이 증가하고 있다. 본 연구에서는 웹서버의 access log에 기록되어 있는 시계열 데이터를 이용하여, 기존 스펙트럼 잔차 방식의 모델이 실시간으로 이상징후를 탐지할 수 있을지에 대해 살펴보고, 실시간 탐지가 어려운 문제를 해결하기 위해 다항회귀모델과 앙상블한 모델을 제시함으로써, 장애상황이 발생하기 전에 빠른 대처를 할 수 있도록 모델을 구현하였다. 그 결과 시스템 장애가 발생하기 전에 이상징후를 감지하여 선제대응을 할 수 있음을 확인할 수 있었다.

Visualization of Convolutional Neural Networks for Time Series Input Data

Sohee Cho, Jaesik Choi

http://doi.org/10.5626/JOK.2020.47.5.445

산업, 의료, 금융 등 다양한 분야에서 인공지능을 활용한 예측 및 진단이 늘어나면서, 인공지능의 내부 작동원리를 설명하는 연구에도 관심이 높아지고 있다. 이미지 데이터에서 중요 입력 특징점을 시각화하는 기존 연구들과 다르게, 본 논문에서는 시계열 데이터의 은닉 노드를 시각화하여 심층신경망 내부의 작동원리를 설명한다. 본 논문은 은닉 노드의 시각화를 쉽게 하도록 가중치 행렬(weight matrix)을 기준으로 은닉 노드를 군집화하여 패턴을 파악하였다. 이를 통해 심층학습 모델의 작동원리를 설명할 뿐만 아니라, 사용자 수준에서 시계열 데이터에 대한 이해를 높일 수 있었다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr