디지털 라이브러리[ 검색결과 ]
격틀 사전과 하위 범주 정보를 이용한 한국어 의미역 결정
기계가 사람과 같이 문장을 처리하게 하려면 사람이 쓴 문장을 토대로 사람이 문장을 통해 발현하는 모든 문장의 표현 양상을 학습해 사람처럼 분석하고 처리할 수 있어야 한다. 이를 위해 기본적으로 처리되어야 할 부분은 언어학적인 정보처리이다. 언어학에서 통사론적으로 문장을 분석할 때 필요한 것이 문장을 성분별로 나눌 수 있고, 문장의 핵심인 용언을 중심으로 필수 논항을 찾아 해당 논항이 용언과 어떤 의미역 관계를 맺고 있는지를 파악할 수 있어야 한다. 본 연구에서는 국립국어원 표준국어대사전을 기반으로 구축한 격틀사전과 한국어 어휘 의미망에서 용언의 하위 범주를 자질로 구축한 CRF 모델을 적용하여 의미역을 결정하는 방법을 사용하였다. 문장의 어절, 용언, 격틀사전, 단어의 상위어 정보를 자질로 구축한 CRF 모델을 기반으로 하여 의미역을 자동으로 태깅하는 실험을 한 결과 정확률이 83.13%로 기존의 규칙 기반 방법을 사용한 의미역 태깅 결과의 정확률 81.2%보다 높은 성능을 보였다.
의미 프레임과 유의어 클러스터를 이용한 한국어 의미역 인식
기계학습 기반의 의미역 인식에서 어휘, 구문 정보가 자질로 주로 쓰이지만, 의미 정보를 분석하는 의미역 인식은 의미 정보 또한 매우 유용한 정보이다. 그러나, 기존 연구에서는 의미 정보를 활용할 수 있는 방법이 제한되어 있기 때문에, 소수의 연구만 진행되었다. 본 논문에서는 의미 정보를 활용하는 방안으로 동형이의어 수준의 의미 애매성 해소 기술, 고유 명사에 대한 개체명 인식 기술, 의미 정보에 기반한 필터링, 유의어 사전을 이용한 클러스터 및 기존 의미 프레임 정보 확장, 구문-의미 정보 연동 규칙, 필수 의미역 오류 보정 등을 제안한다. 제안하는 방법은 기존 연구 대비 뉴스 도메인인 Korean Propbank 는 3.77, 위키피디아 문서 기반의 Exobrain GS 3.0 평가셋에서는 8.05의 성능 향상을 보였다.