디지털 라이브러리[ 검색결과 ]
검색 : [ keyword: compound-protein interaction ] (1)
딥러닝을 이용한 화합물-단백질 상호작용 예측
http://doi.org/10.5626/JOK.2019.46.10.1054
화합물과 단백질 간의 상호작용을 특성화하는 것은 약물 개발 및 탐색을 위해 중요한 과정이다. 상호작용을 파악하기 위해 단백질과 화합물의 구조 데이터를 이용하지만 그 구조가 알려져 있지 않은 경우도 많으며, 많은 계산 양으로 인해 예측의 속도와 정확도도 떨어질 수 있다는 한계가 있다. 본 논문에서는 기계번역에서 사용되는 sequence-to-sequence 알고리즘과 입력벡터를 효과적으로 축소시키기 위한 오토 인코더를 결합한 모델인 S2SAE (Sequence-To-Sequence Auto-Encoder)를 이용하여 화합물-단백질 상호작용을 예측하였다. 본 논문에서 제안한 방법은 기존의 복합체를 나타내는 표현들보다 적은 수의 특징들을 이용하여 상호작용을 예측할 수 있으며, 기존의 방법보다 높은 예측 정확도를 보여주었다.