디지털 라이브러리[ 검색결과 ]
검색 : [ keyword: generalization error ] (1)
학습 데이터를 이용한 CNN의 일반화 오류 평가 방법
http://doi.org/10.5626/JOK.2021.48.3.284
우수한 성능의 CNN일지라도 실제 환경을 예상한 테스트 데이터셋 상의 오류인 일반화 오류는 높게 나오는 경우가 있다. 이 일반화 오류를 줄여서 모델이 실제 환경에서도 학습된 성능이 유지될 수 있도록 해야 한다. 본 논문에서는 데이터 다양성이 높은 학습 데이터셋을 통해 학습한 모델이 클래스별로 자주 활성화하는 뉴런 셋을 반응 셋이라 정의한다. 또한 테스트 데이터셋의 데이터 다양성에 따른 일반화 오류의 차이도 고려한다. 본 논문은 이 차이를 상대적 일반화 오류라 정의한다. 본 논문에서는 CNN의 클래스별 반응 셋과 상대적 일반화 오류의 관계를 이용하여서 학습 데이터셋 만을 이용한 CNN의 일반화 오류의 평가 방법을 제안한다. 사례연구를 통해 반응 셋 비율이 상대적 일반화 오류와 관계가 있음을 확인하였으며 본 논문에서 제안한 학습 데이터를 이용한 CNN의 일반화 오류의 평가 방법이 효과적임을 확인하였다.