Search : [ keyword: heterogeneous data learning ] (1)

Event Cognition-based Daily Activity Prediction Using Wearable Sensors

Chung-Yeon Lee, Dong Hyun Kwak, Beom-Jin Lee, Byoung-Tak Zhang

http://doi.org/

Learning from human behaviors in the real world is essential for human-aware intelligent systems such as smart assistants and autonomous robots. Most of research focuses on correlations between sensory patterns and a label for each activity. However, human activity is a combination of several event contexts and is a narrative story in and of itself. We propose a novel approach of human activity prediction based on event cognition. Egocentric multi-sensor data are collected from an individual’s daily life by using a wearable device and smartphone. Event contexts about location, scene and activities are then recognized, and finally the users’’ daily activities are predicted from a decision rule based on the event contexts. The proposed method has been evaluated on a wearable sensor data collected from the real world over 2 weeks by 2 people. Experimental results showed improved recognition accuracies when using the proposed method comparing to results directly using sensory features.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr