검색 : [ keyword: hybrid-network ] (1)

ConTL: CNN, Transformer 및 LSTM의 결합을 통한 EEG 기반 감정인식 성능 개선

강현욱, 김병형

http://doi.org/10.5626/JOK.2024.51.5.454

본 논문은 EEG 기반 감정인식을 위해 convolutional neural network (CNN), Transformer, long short-term memory (LSTM)을 결합한 hybrid-network인 ConTL을 제안한다. 먼저, 입력된 EEG 로부터 지역적인 특징을 학습하기 위해 CNN을 활용한다. 이후 Transformer가 출력된 특징으로부터 전체 적인 시간 종속성을 학습한다. 추가로 순차적 시간 의존성 학습을 위해서 Transformer로부터 출력된 특징 을 bi-directional LSTM에 넣는다. 제안 모델의 성능 검증을 위해 5가지 state-of-art 모델과 분류 정확 도를 비교했고 그중 SEED-IV에서는 CCNN 대비 0.73%, DEAP에서는 valence와 arousal에서 각각 DGCNN 보다 0.97%, 0.68% 더 높은 성능을 나타냈다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr