Search : [ keyword: large graph ] (2)

Efficient Shortest Path Techniques on a Summarized Graph based on the Relationships

Hyunwook Kim, HoJin Seo, Young-Koo Lee

http://doi.org/10.5626/JOK.2017.44.7.710

As graphs are becoming increasingly large, the costs for storing and managing data are increasing continuously. Shortest path discovery over a large graph requires long running time due to frequent disk I/Os and high complexity of the graph data. Recently, graph summarization techniques have been studied, which reduce the size of graph data and disk I/Os by representing highly dense subgraphs as a single super-node. Decompressing should be minimized for efficient shortest path discovery over the summarized graph. In this paper, we analyze the decompression performance of a summarized graph and propose an approximate technique that discovers the shortest path quickly with a minimum error ratio. We also propose an exact technique that efficiently discovered the shortest path by exploiting an index built on paths containing super-nodes. In our experiments, we showed that the proposed technique based on the summarized graph can reduce the running time by up to 70% compared with the existing techniques performed on the original graph.

An Efficient Large Graph Clustering Technique based on Min-Hash

Seok-Joo Lee, Jun-Ki Min

http://doi.org/

Graph clustering is widely used to analyze a graph and identify the properties of a graph by generating clusters consisting of similar vertices. Recently, large graph data is generated in diverse applications such as Social Network Services (SNS), the World Wide Web (WWW), and telephone networks. Therefore, the importance of graph clustering algorithms that process large graph data efficiently becomes increased. In this paper, we propose an effective clustering algorithm which generates clusters for large graph data efficiently. Our proposed algorithm effectively estimates similarities between clusters in graph data using Min-Hash and constructs clusters according to the computed similarities. In our experiment with real-world data sets, we demonstrate the efficiency of our proposed algorithm by comparing with existing algorithms.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr