검색 : [ keyword: molecular embedding ] (2)

신약 후보 물질의 ADMET 속성 예측을 위한 사전학습 모델 기반의 일반화 성능 향상 기법

김윤주, 박상현

http://doi.org/10.5626/JOK.2025.52.7.601

신약 개발 과정에서 ADMET(흡수, 분포, 대사, 배설, 독성) 속성의 정확한 예측은 임상 시험 실패율을 낮추고 개발 비용을 절감하는 데 중요한 역할을 한다. 본 연구에서는 그래프 트랜스포머 기반의 분자 임베딩과 사전 학습된 UniMol 모델 기반의 임베딩을 결합하여 신약 후보 물질의 ADMET 예측 성능을 높이는 방법을 제안한다. 제안된 모델은 분자의 그래프 구조에서 결합 유형 정보를 반영하여 보다 화학적으로 정교한 표현을 생성하며, UniMol의 사전 학습된 3D 임베딩을 활용하여 분자의 공간적 특성을 효과적으로 학습한다. 이를 통해 데이터 부족 문제를 보완하고, 모델의 일반화 성능을 향상시킬 수 있도록 설계하였다. 본 연구에서는 총 10개의 ADMET 속성을 대상으로 예측 실험을 수행하였다. 실험 결과, 제안된 모델은 기존 방법들보다 우수한 예측 성능을 보였으며, 원자의 결합 정보와 3D 구조를 효과적으로 통합함으로써 ADMET 속성 예측의 정확도를 향상시킬 수 있음을 확인하였다.

그래프 동형 모델을 이용한 탈수소화 엔탈피 예측

최건영, 육현우, 한정우, 홍참길

http://doi.org/10.5626/JOK.2024.51.5.406

본 논문은 분자의 구조 정보를 이용하는 기존의 물성 예측 접근에 그래프 합성곱 신경망 모델을 병합하여 분자 임베딩을 생성, 이상적인 액상유기수소운반체 선정에 중요한 역할을 하는 탈수소화 엔탈피를 예측하는 연구를 소개한다. 제안하는 방법은 그래프 합성곱 모델 중 가장 좋은 표현력을 가진 것으로 알려진 그래프 동형 모델(Graph Isomorphism Network)을 사용했으며, 해당 모델을 통해 개별 분자를 구성하는 원자 정보를 바탕으로 분자 임베딩을 생성했을 때, 기존의 물리화학(chemical physics) 이론에 기반한 알고리즘에 비해 탈수소화 엔탈피를 예측하는데 더 적합한 임베딩을 생성할 수 있음을 관찰하였다. 또한 생략 연결 (skip connection)을 사용하여 깊은 그래프 합성곱 층을 구성할 수 있으며, 작은 배치 사이즈로 모델을 학습할 때 모델의 성능이 증가하는 경향성을 관찰한 내용을 보고한다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr