Digital Library[ Search Result ]
Ensemble Modeling with Convolutional Neural Networks for Application in Visual Object Tracking
Minji Kim, Ilchae Jung, Bohyung Han
http://doi.org/10.5626/JOK.2021.48.2.211
In the area of computer vision, visual object tracking aims to estimate the status of a target object from an input video stream, which can be broadly applicable to industries such as surveillance and the military. Recently, deep learning-based tracking algorithms have gone through significant improvements by using tracking-by-detection or template-based approach. However, these approaches are still suffering from inherent limitations caused by each strategy. In this paper, we propose a novel method to model ensemble trackers by fusing the two strategies, tracking-by-detection and template-based approach. We report significantly enhanced performance on widely adopted visual object tracking benchmarks, OTB100, UAV123, and LaSOT.
A Best View Selection Method in Videos of Interested Player Captured by Multiple Cameras
Hotak Hong, Gimun Um, Jongho Nang
http://doi.org/10.5626/JOK.2017.44.12.1319
In recent years, the number of video cameras that are used to record and broadcast live sporting events has increased, and selecting the shots with the best view from multiple cameras has been an actively researched topic. Existing approaches have assumed that the background in video is fixed. However, this paper proposes a best view selection method for cases in which the background is not fixed. In our study, an athlete of interest was recorded in video during motion with multiple cameras. Then, each frame from all cameras is analyzed for establishing rules to select the best view. The frames were selected using our system and are compared with what human viewers have indicated as being the most desirable. For the evaluation, we asked each of 20 non-specialists to pick the best and worst views. The set of the best views that were selected the most coincided with 54.5% of the frame selection using our proposed method. On the other hand, the set of views most selected as worst through human selection coincided with 9% of best view shots selected using our method, demonstrating the efficacy of our proposed method.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr