Search : [ keyword: prediction ] (66)

Activity Prediction from Sensor Data using Convolutional Neural Networks and an Efficient Compression Method

Woojeong Jin, Dongjin Choi, Youngjin Kim, U Kang

http://doi.org/10.5626/JOK.2018.45.6.564

The identification of the number of occupants and their activities using the IoT system in a building is an important task to improve the power efficiency and reduce the cost of using smart cooling/heating systems. In the actual building management system, it is possible to use equipment such as a camera to understand the current situation in the room, and to directly determine the number of occupants and their types of behavior. However, identifying the number of people and behavior types in this way is inefficient and requires a large amount of storage space for data. In this study, indoor sensor data were collected using an infrared Grid-Eye sensor and noise sensor. Based on this data, we also propose a deep learning model that captures the number of participants and behavior patterns and a deep learning model that considers the temporal characteristics of data. The proposed model identifies the number of people with an accuracy of about 95.3% and human activities with an accuracy of 90.9%. We also propose a method to reduce the storage space while minimizing the loss of accuracy using truncated SVD.

An Approach to a Learning Prediction Model for Recognition of Daily Life Pattern based on Event Calculus

Seok-Hyun Bae, Sung-hyuk Bang, Hyun-Kyu Park, Myung-Joong Jeon, Je-Min Kim, Young-Tack Park

http://doi.org/10.5626/JOK.2018.45.5.466

Several studies have been conducted on data analysis and predicting results with the advance of machine learning algorithms. Still, there are many problems of cleaning the noise of the real-life dataset, which is disturbing a clear recognition on complex patterns of human intention. To overcome this limitation, this paper proposes an event calculus methodology with 3 additional steps for the recognition of human intention: intention reasoning, conflict resolution, and noise reduction. Intention reasoning identifies the intention of the living pattern time-series data. In conflict resolution, existing ongoing intentions and inferred intention are checked by a conflict graph, so that the intentions that can occur in parallel are inferred. Finally, for noise reduction, the inferred intention from the noise of living pattern data is filtered by the history of fluent. For the evaluation of the event calculus module, this paper also proposes data generation methodology based on a gaussian mixture model and heuristic rules. The performance estimation was conducted with 300 sequential instances with 5 intentions that were observed for 13 hours. An accuracy of 89.3% was achieved between the probabilistic model and event calculus module.

Approach for Learning Intention Prediction Model based on Recurrent Neural Network

Sung-hyuk Bang, Seok-Hyun Bae, Hyun-Kyu Park, Myung-Joong Jeon, Je-Min Kim, Young-Tack Park

http://doi.org/10.5626/JOK.2018.45.4.360

Several studies have been conducted on human intention prediction with the help of machine learning models. However, these studies have indicated a fundamental shortcoming of machine learning models since they are unable to reflect a long span of past information. To overcome this limitation, this paper proposes a human intention prediction model based on a recurrent neural network(RNN). For performing predictions, the RNN model classifies the patterns of time-series data by reflecting previous sequence patterns of the time-series data. For performing intention prediction using the proposed model, an RNN model was trained to classify predefined intentions by using attributes such as time, location, activity and detected objects in a house. Each RNN node is composed of a long short-term memory cell to solve the long term dependency problem. To evaluate the proposed intention prediction model, a data generator based on the weighted-graph structure has been developed for generating data on a daily basis. By incorporating 23,000 data instances for training and testing the proposed intention prediction model, a prediction accuracy value of 90.52% was achieved.

A Feature Selection Technique in the Neural Network for Demand Forecasting of Mobile Payment System

Ho-Joon Kim, Yun-Seok Cho, Kyungmi Kim

http://doi.org/10.5626/JOK.2018.45.4.370

In this paper, we present a time series prediction technique based on neural network as a methodology for forecasting service demand of mobile payment system. We propose a two-stage neural network model for the feature selection process and the prediction process. Three types of fuzzy membership functions were adopted for the representation of feature data, and a hyperbox-based neural network model is used for the evaluation of feature relevance factor. The proposed feature selection technique reduces the amount of computation and eliminates erroneous feature data in the learning data set. We evaluated the usefulness of the proposed method through experiments using two years of data obtained form actual smart campus systems.

Identification of Heterogeneous Prognostic Genes and Prediction of Cancer Outcome using PageRank

Jonghwan Choi, Jaegyoon Ahn

http://doi.org/10.5626/JOK.2018.45.1.61

The identification of genes that contribute to the prediction of prognosis in patients with cancer is one of the challenges in providing appropriate therapies. To find the prognostic genes, several classification models using gene expression data have been proposed. However, the prediction accuracy of cancer prognosis is limited due to the heterogeneity of cancer. In this paper, we integrate microarray data with biological network data using a modified PageRank algorithm to identify prognostic genes. We also predict the prognosis of patients with 6 cancer types (including breast carcinoma) using the K-Nearest Neighbor algorithm. Before we apply the modified PageRank, we separate samples by K-Means clustering to address the heterogeneity of cancer. The proposed algorithm showed better performance than traditional algorithms for prognosis. We were also able to identify cluster-specific biological processes using GO enrichment analysis.

A Model for Nowcasting Commodity Price based on Social Media Data

(Jaewoo Kim, Meeyoung Cha, Jong Gun Lee

http://doi.org/10.5626/JOK.2017.44.12.1258

Capturing real-time daily information on food prices is invaluable to help policymakers and development organizations address food security problems and improve public welfare. This study analyses the possible use of large-scale online data, available due to growing Internet connectivity in developing countries, to provide updates on food security landscape. We conduct a case study of Indonesia to develop a time-series prediction model that nowcasts daily food prices for four types of food commodities that are essential in the region: beef, chicken, onion and chilli. By using Twitter price quotes, we demonstrate the capability of social data to function as an affordable and efficient proxy for traditional offline price statistics.

Group Emotion Prediction System based on Modular Bayesian Networks

SeulGi Choi, Sung-Bae Cho

http://doi.org/10.5626/JOK.2017.44.11.1149

Recently, with the development of communication technology, it has become possible to collect various sensor data that indicate the environmental stimuli within a space. In this paper, we propose a group emotion prediction system using a modular Bayesian network that was designed considering the psychological impact of environmental stimuli. A Bayesian network can compensate for the uncertain and incomplete characteristics of the sensor data by the probabilistic consideration of the evidence for reasoning. Also, modularizing the Bayesian network has enabled flexible response and efficient reasoning of environmental stimulus fluctuations within the space. To verify the performance of the system, we predict public emotion based on the brightness, volume, temperature, humidity, color temperature, sound, smell, and group emotion data collected in a kindergarten. Experimental results show that the accuracy of the proposed method is 85% greater than that of other classification methods. Using quantitative and qualitative analyses, we explore the possibilities and limitations of probabilistic methodology for predicting group emotion.

Health State Clustering and Prediction Based on Bayesian HMM

Bong-Kee Sin

http://doi.org/10.5626/JOK.2017.44.10.1026

In this paper a Bayesian modeling and duration-based prediction method is proposed for health clinic time series data using the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). HDP-HMM is a Bayesian extension of HMM which can find the optimal number of health states, a number which is highly uncertain and even difficult to estimate under the context of health dynamics. Test results of HDP-HMM using simulated data and real health clinic data have shown interesting modeling behaviors and promising prediction performance over the span of up to five years. The future of health change is uncertain and its prediction is inherently difficult, but experimental results on health clinic data suggests that practical long-term prediction is possible and can be made useful if we present multiple hypotheses given dynamic contexts as defined by HMM states.

T-Commerce Sale Prediction Using Deep Learning and Statistical Model

Injung Kim, Kihyun Na, Sohee Yang, Jaemin Jang, Yunjong Kim, Wonyoung Shin, Deokjung Kim

http://doi.org/10.5626/JOK.2017.44.8.803

T-commerce is technology-fusion service on which the user can purchase using data broadcasting technology based on bi-directional digital TVs. To achieve the best revenue under a limited environment in regard to the channel number and the variety of sales goods, organizing broadcast programs to maximize the expected sales considering the selling power of each product at each time slot. For this, this paper proposes a method to predict the sales of goods when it is assigned to each time slot. The proposed method predicts the sales of product at a time slot given the week-in-year and weather of the target day. Additionally, it combines a statistical predict model applying SVD (Singular Value Decomposition) to mitigate the sparsity problem caused by the bias in sales record. In experiments on the sales data of W-shopping, a T-commerce company, the proposed method showed NMAE (Normalized Mean Absolute Error) of 0.12 between the prediction and the actual sales, which confirms the effectiveness of the proposed method. The proposed method is practically applied to the T-commerce system of W-shopping and used for broadcasting organization.

‘Hot Search Keyword’ Rank-Change Prediction

Dohyeong Kim, Byeong Ho Kang, Sungyoung Lee

http://doi.org/10.5626/JOK.2017.44.8.782

The service, "Hot Search Keywords", provides a list of the most hot search terms of different web services such as Naver or Daum. The service, bases the changes in rank of a specific search keyword on changes in its users’ interest. This paper introduces a temporal modelling framework for predicting the rank change of hot search keywords using past rank data and machine learning. Past rank data shows that more than 70% of hot search keywords tend to disappear and reappear later. The authors processed missing rank value, using deletion, dummy variables, mean substitution, and expectation maximization. It is however crucial to calculate the optimal window size of the past rank data. We proposed an optimal window size selection approach based on the minimum amount of time a topic within the same or a differing context disappeared. The experiments were conducted with four different machine-learning techniques using the Naver, Daum, and Nate "Hot Search Keywords" datasets, which were collected for 2 years.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr