Digital Library[ Search Result ]
A Framework Integrating Problem Frames and Goal Modeling to Support Variability Analysis during Requirements Elicitation
Variability management is the foremost criterion that defines the extent to which complexities can be handled in a system. Predominantly, the requirements’ engineering (RE) study overlooks, or speculates a consistent behavior of, the environment in which a system functions. In real-time systems it is vital to observe and adjust to an intrinsically changing context. Therefore, in this work we identify the requirements of the system in various contexts by recommending a framework using i* goal model, problem frames, use case maps and live sequence charts. The framework is illustrated using a case study of the smart grid RTP system. In the case study, elaboration of scenarios using use case maps and live sequence charts proved beneficial as they assisted in early analysis and validation of contexts. In addition, the elaboration of requirements for obstacle and conflict analysis assists the requirements engineer to increase the robustness of the system. The proposed framework is evaluated theoretically and by empirical study.
A Software Architecture Design Method that Matches Problem Frames and Architectural Patterns
Jungmin Kim, Sungwon Kang, Jihyun Lee
While architectural patterns provide software development solutions by providing schemas for structural organizations of software systems based on empirical knowledge, Jackson’s problem frames provide a method of analyzing software problems. Problem frames are useful to understanding the software development problem, by putting emphasis on the problem domain, rather than on the solution space. Research exists that relates problem frames and software architecture, but most of this research uses problem frames only to understand given problems. Moreover, none of the existing research derives architectural patterns by considering both problem frames and quality attributes. In this paper, we propose a software architecture design method for pattern-based architecture design, by matching problem frames and architectural patterns. To that end, our approach first develops the problem model based on the problem frames approach, and then uses it to match with candidate architectural patterns, from the perspectives of both functionality, and quality attributes. Functional matching uses the problem frame diagram to match the problem model of an architectural pattern. We conduct a case study to show that our approach can systematically decide the right architectural patterns, and provide a basis for fine-grained software architecture design.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr