검색 : [ keyword: question answering system ] (3)

뉴럴-심볼릭 순위화 모델 기반 2단계 단락 재순위화 모델

배용진, 김현, 임준호, 김현기, 이공주

http://doi.org/10.5626/JOK.2021.48.5.501

자연어 질의응답 시스템과 관련한 이전의 연구들은 주어진 질문과 단락으로부터 정확한 정답을 추출하는 문제에 초점을 맞추고 있다. 그러나, 기계독해에서 오픈 도메인 질의응답으로 문제를 확장하였을 때, 정답이 포함된 단락을 잘 찾는 것이 기계독해 못지않은 중요한 요소이다. DrQA에서는 초기 검색 단계를 포함하여 질의응답을 하였을 때 Exact Match@Top1 성능이 69.5%에서 27.1%로 하락했다고 평가하였다. 본 논문에서는 질의응답 시스템 성능 향상을 위해 2단계 단락 재순위화 모델을 제안한다. 2단계 단락 재순위화 모델은 심볼릭 순위화 모델과 뉴럴 순위화 모델의 결과를 통합하여 다시 재순위화하는 모델이다. 심볼릭 순위화 모델은 CatBoost 알고리즘과 질문과 단락 간의 자질을 기반으로 단락을 순위화 하고, 뉴럴 순위화 모델은 한국어 딥러닝 언어모델(KorBERT)을 사후학습하여 순위화하였다. 2단계 모델은 뉴럴 리그레션 모델에 기반하여 순위화하였다. 본 논문에서는 특징이 다른 순위화 모델을 결합하여 성능을 극대화하였고, 최종적으로 제안한 모델은 1,000건의 질문을 평가하였을 때 MRR 기준 85.8%과 BinaryRecall@Top1기준 82.2%의 성능을 보였고, 각 성능은 베이스라인 모델보다 17.3%(MRR), 22.3%(BR@Top1)이 향상되었다.

위키피디아 기반의 효과적인 개체 링킹을 위한 NIL 개체 인식과 개체 연결 중의성 해소 방법

이호경, 안재현, 윤정민, 배경만, 고영중

http://doi.org/10.5626/JOK.2017.44.8.813

개체 링킹은 입력된 질의에 존재하는 개체를 표현한 개체 표현(entity mention)을 지식베이스에 존재하는 개체와 연결하여 의미를 파악하는 연구이다. 개체 링킹에 관한 연구는 지식 베이스 구축 문제, 다중 표현 문제, 개체 연결 중의성 문제, NIL 개체 인식 문제가 존재한다. 본 연구에서는 지식 베이스 구축 문제와 다중 표현 문제를 해결하기 위해 위키피디아를 기반으로 개체 이름 사전을 구축한다, 또한, 문맥 유사도, 의미적 관련성, 단서 단어 점수, 개체 표현의 개체명 타입 유사도, 개체 이름 매칭 점수, 개체인기도 점수 자질들을 기반으로 SVM(support vector machine)을 학습하여, NIL 개체를 인식하는 문제와 개체 연결 중의성을 해소하는 방법을 제안한다. 구축한 지식 베이스를 기반으로 제안한 두 방법을 순차적으로 적용하였을 때 좋은 개체 링킹 성능을 얻었다. 개체 링킹 시스템의 성능은 NIL 개체 인식 성능이 83.66%, 중의성 해소 성능이 90.81%의 F1 점수를 보였다.

질의응답 시스템에서 처음 보는 단어의 역문헌빈도 기반 단어 임베딩 기법

이우인, 송광호, 심규석

http://doi.org/

질의응답 시스템은 사용자의 질문에 대한 답을 찾아주는 시스템으로, 기존의 검색엔진이 사용자의 질의에 대해 관련된 문서의 링크만을 찾아주는 반면 질문에 대한 최종적인 답을 찾아준다는 차이점이 있다. 특정 분야에 국한되지 않고 다양한 질문을 처리해주는 오픈 도메인 질의응답 시스템에 필요한 연구들이 최근 자연어 처리, 인공지능, 데이터 마이닝 등 학계의 다양한 분야들에서 뜨거운 관심을 받고있다. 하지만 관련 연구에서는 학습 데이터에는 없었던 단어들이 질문에 대한 정확한 답과 유사한 오답을 구별해내는데 결정적인 역할을 할 수 있음에도, 이러한 처음 보는 단어들을 모두 단일 토큰으로 치환해버리는 문제가 있다. 본 논문에서는 문맥 정보를 통해 이러한 모르는 단어에 대한 벡터를 계산하는 방법을 제안한다. 그리고 역문헌빈도 가중치를 활용하여 문맥정보를 더 효율적으로 처리하는 모델을 제안한다. 또한 풍부한 실험을 통해 질의응답 시스템의 모델 학습 속도 및 정확성이 기존 연구에 비해 향상됨을 확인하였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr