디지털 라이브러리[ 검색결과 ]
객체 탐지에서의 효율적인 예측 박스 회귀 학습을 위한 둘레 기반 IoU 손실함수
http://doi.org/10.5626/JOK.2021.48.8.913
일반적으로 객체 탐지를 위한 신경망을 학습시키기 위해서는 클래스 분류와 예측 박스의 회귀 손실 함수를 결합 학습한다. 하지만 기존 회귀 손실 함수는 예측 바운딩 박스와 타깃 박스의 겹침을 측정하는 데 쓰이는 IoU와의 상관관계가 크지 않아 객체 탐지에 그대로 사용하기에는 한계가 있다. 이에 회귀의 최적화를 돕기 위한 페널티 항(penalty term)을 회귀 손실 함수인 IoU Loss에 추가하는 연구가 진행되었다. 하지만 해당 페널티 항으로는 박스들이 하나의 박스가 다른 박스를 포함하거나 중간 점이 겹치면 값이 0이 되는 경우가 있어서 IoU가 최적화되는 데 한계가 있다. 이를 보완하기 위해 본 논문에서는 예측박스와 타깃 박스를 감싸는 영역과 타깃 박스와 예측 박스 각각의 둘레 차이를 이용한 새로운 회귀 손실함수, Perimeter IoU Loss를 제안한다. 제안한 방법을 적용한 결과 여러 객체 탐지 모델을 이용한 실험과 모의실험을 통하여 Perimeter IoU Loss가 다른 회귀 손실 함수보다 더 높은 정확도를 보임을 확인하였다.
디노이징 메커니즘을 통한 한국어 대화 모델 정규화
http://doi.org/10.5626/JOK.2018.45.6.572
대화 시스템은 입력 발화에 대해 적절한 응답을 해주는 시스템으로 최근에는 대화 모델 학습에 딥러닝 방식의 시퀀스-투-시퀀스 모델을 많이 이용한다. 하지만 해당 방식으로 학습한 대화 모델은 적절한 정보나 호응을 보이지 않는 안전하고 무미건조한 응답을 생성하거나 어미, 어순 변화 등 다양한 형태로 변형된 입력 발화에 대해 적절한 응답을 생성하지 못하는 문제가 있다. 본 논문에서는 이를 해결하기 위해 디노이징 메커니즘을 적용한 디노이징 응답 생성 모델을 제안한다. 제안 모델은 입력 발화에 임의의 노이즈를 가해 원래의 출력을 학습함으로써 매 반복 학습마다 확률적으로 새로운 입력 데이터를 경험하게 한다. 이를 통해 모델을 정규화하여 모델이 강건한 응답을 생성할 수 있도록 한다. 제안하는 방법의 우수성을 보이기 위해 9만 건의 한국어 대화 데이터로 실험을 수행하였다. 실험 결과 제안하는 방법이 비교 모델보다 ROUGE F1 점수와 사람이 평가한 정성 평가 모두에서 더 우수한 결과를 보였다.