Search : [ keyword: residual learning ] (1)

A Hybrid Deep Learning Model for Real-Time Forecasting Fire Temperature in Underground Utility Tunnel Based on Residual CNN-LSTM

Joseph Ahn, Hyo-gun Yoon

http://doi.org/10.5626/JOK.2024.51.2.131

Underground utility tunnels (UUTs) play major roles in sustaining the life of citizens and industries with regard to carrying electricity, telecommunication, water supply pipes. Fire is one of the most commonly common disasters in underground facilities, which can be prevented through proper management. This paper proposes a hybrid deep learning model named Residual CNN-LSTM to predict fire temperatures. Scenarios of underground facility fire outbreaks were created and fire temperature data was collected using FDS software. In the experiment, we analyzed the appropriate depth of residual learning of the proposed model and compared the performance to other predictive models. The results showed that RMSE, MAE and MAPE of Residual CNN-LSTM are each 0.061529, 0.053851, 6.007076 respectively, making Residual CNN-LSTM far superior to other models in terms of its predictive performance.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr