검색 : [ keyword: sentiment features ] (1)

감정 분석을 위한 BERT 사전학습모델과 추가 자질 모델의 결합

이상아, 신효필

http://doi.org/10.5626/JOK.2021.48.7.815

대규모 코퍼스에 기반한 사전학습모델인 BERT 모델은 언어 모델링을 통해 텍스트 내의 다양한 언어 정보를 학습할 수 있다고 알려져 있다. 여기에는 별도의 언어 자질이 요구되지 않으나, 몇몇 연구에서 특정한 언어 지식을 추가 반영한 BERT 기반 모델이 해당 지식과 관련된 자연어처리 문제에서 더 높은 성능을 보고하였다. 본 연구에서는 감정 분석 성능을 높이기 위한 방법으로 한국어 감정 사전에 주석된 감정 극성과 강도 값을 이용해 감정 자질 임베딩을 구성하고 이를 보편적 목적의 BERT 모델과 결합하는 외적 결합과 지식 증류 방식을 제안한다. 감정 자질 모델은 작은 스케일의 BERT 모델을 적은 스텝 수로 학습하여 소요 시간과 비용을 줄이고자 했으며, 외적 결합된 모델들은 영화평 분류와 악플 탐지문제에서 사전학습모델의 단독 성능보다 향상된 결과를 보였다. 또한 본 연구는 기존의 BERT 모델 구조에 추가된 감정 자질이 언어 모델링 및 감정 분석의 성능을 개선시킨다는 것을 관찰하였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr