Research on Action Selection Techniques and Dynamic Dense Reward Application for Efficient Exploration in Policy-Based Reinforcement Learning
Vol. 52, No. 4, pp. 293-303, Apr. 2025

Abstract
Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
|
Cite this article
[IEEE Style]
J. Kim, J. Kim, K. Cho, "Research on Action Selection Techniques and Dynamic Dense Reward Application for Efficient Exploration in Policy-Based Reinforcement Learning," Journal of KIISE, JOK, vol. 52, no. 4, pp. 293-303, 2025. DOI: 10.5626/JOK.2025.52.4.293.
[ACM Style]
Junhyuk Kim, Junoh Kim, and Kyungeun Cho. 2025. Research on Action Selection Techniques and Dynamic Dense Reward Application for Efficient Exploration in Policy-Based Reinforcement Learning. Journal of KIISE, JOK, 52, 4, (2025), 293-303. DOI: 10.5626/JOK.2025.52.4.293.
[KCI Style]
김준혁, 김준오, 조경은, "정책 기반 강화학습에서의 효율적 탐색을 위한 행동 선택 기법 및 동적 밀집 보상 적용 연구," 한국정보과학회 논문지, 제52권, 제4호, 293~303쪽, 2025. DOI: 10.5626/JOK.2025.52.4.293.
[Endnote/Zotero/Mendeley (RIS)] Download
[BibTeX] Download
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr