대용량 GPS 궤적 데이터를 위한 효율적인 클러스터링 


43권  1호, pp. 40-46, 1월  2016


PDF

  요약

도로지도 생성은 인공위성 촬영이나 현장실사를 기반으로 한다. 그리하여 도로지도를 생성하고 수정하는데 많은 시간과 비용이 든다. 이러한 이유로 차량 GPS 데이터를 이용해 도로지도를 생성하는 연구가 활발히 진행되고 있다. 도로지도 생성 연구에서 가장 중요한 문제는 주도로와 같은 대표궤적을 추출하는 것이다. 대표궤적 추출을 수행할 때에는 시작과 끝이 비슷한 궤적데이터들의 집합을 전제로 하여 궤적을 추출한다. 따라서 대표궤적을 추출하기에 앞서 전처리 과정으로 궤적 클러스터링 작업이 필요하다. 본 논문에서는 이러한 문제를 해결하기 위해 하나의 영역을 일정한 격자로 분할하고, Sweep Line 알고리즘을 응용해 유사궤적들을 탐색한다. 마지막으로 프레쉐거리를 이용하여 궤적 간 유사도를 계산하였다. 실제로 서울의 강남구 지역에 있는 500대의 차량 GPS 궤적을 가지고 클러스터링 작업을 수행하였다. 또한, 실험을 통하여 격자분할 접근방식의 빠른 수행시간과 안정성을 보였다.


  통계
2022년 11월부터 누적 집계
동일한 세션일 때 여러 번 접속해도 한 번만 카운트됩니다. 그래프 위에 마우스를 올리면 자세한 수치를 확인하실 수 있습니다.


  논문 참조

[IEEE Style]

T. Kim, B. Park, J. Park, H. Cho, "An Efficient Clustering Algorithm for Massive GPS Trajectory Data," Journal of KIISE, JOK, vol. 43, no. 1, pp. 40-46, 2016. DOI: .


[ACM Style]

Taeyong Kim, Bokuk Park, Jinkwan Park, and Hwan-Gue Cho. 2016. An Efficient Clustering Algorithm for Massive GPS Trajectory Data. Journal of KIISE, JOK, 43, 1, (2016), 40-46. DOI: .


[KCI Style]

김태용, 박보국, 박진관, 조환규, "대용량 GPS 궤적 데이터를 위한 효율적인 클러스터링," 한국정보과학회 논문지, 제43권, 제1호, 40~46쪽, 2016. DOI: .


[Endnote/Zotero/Mendeley (RIS)]  Download


[BibTeX]  Download



Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr