Digital Library[ Search Result ]
Automatic Pancreas Segmentation Based on Cascaded Network Considering Pancreatic Uncertainty in Abdominal CT Images
Hyeon Dham Yoon, Hyeonjin Kim, Helen Hong
http://doi.org/10.5626/JOK.2021.48.5.548
Pancreas segmentation from abdominal CT images is a prerequisite step for understanding the shape of the pancreas in pancreatic cancer detection. In this paper, we propose an automatic pancreas segmentation method based on a deep convolutional neural network(DCNN) that considers information about the uncertain regions generated by the positional and morphological diversity of the pancreas in abdominal CT images. First, intensity and spacing normalizations are performed in the whole abdominal CT images. Second, the pancreas is localized using 2.5D segmentation networks based on U-Net on the axial, coronal, and sagittal planes and by combining through a majority voting. Third, pancreas segmentation is performed in the localized volume using a 3D U-Net-based segmentation network that takes into account the information about the uncertain areas of the pancreas. The average DSC of pancreas segmentation was 83.50%, which was 10.30%p, 10.44%p, 6.52%p, 1.14%p, and 3.95%p higher than the segmentation method using 2D U-Net at axial view, coronal view, sagittal view, majority voting of the three planes, and 3D U-Net at localized volume, respectively.
Automatic Segmentation of Renal Parenchyma using Shape and Intensity Information based on Multi-atlas in Abdominal CT Images
Hyeonjin Kim, Helen Hong, Kidon Chang, Koon Ho Rha
http://doi.org/10.5626/JOK.2018.45.9.937
Renal parenchyma segmentation is necessary to predict contralateral hypertrophy after renal partial nephrectomy. In this paper, we propose an automatic segmentation method of renal parenchyma using shape and intensity information based on the multi-atlas in abdominal CT images. First, similar atlases are selected using volume-based similarity registration and intensity-similarity measure. Second, renal parenchyma is segmented using two-stage registration and constrained intensity-based locally-weighted voting. Finally, renal parenchyma is refined using a Gaussian mixture model-based multi-thresholds and shape-prediction map in under- and over-segmented data. The average dice similarity coefficient of renal parenchyma was 91.34%, which was 18.19%, 1.35% higher than the segmentation method using majority voting and locally-weighted voting in dice similarity coefficient, respectively.
Automatic Segmentation of Femoral Cartilage in Knee MR Images using Multi-atlas-based Locally-weighted Voting
Hyeun A Kim, Hyeonjin Kim, Han Sang Lee, Helen Hong
In this paper, we propose an automated segmentation method of femoral cartilage in knee MR images using multi-atlas-based locally-weighted voting. The proposed method involves two steps. First, to utilize the shape information to show that the femoral cartilage is attached to a femur, the femur is segmented via volume and object-based locally-weighted voting and narrow-band region growing. Second, the object-based affine transformation of the femur is applied to the registration of femoral cartilage, and the femoral cartilage is segmented via multi-atlas shape-based locally-weighted voting. To evaluate the performance of the proposed method, we compared the segmentation results of majority voting method, intensity-based locally-weighted voting method, and the proposed method with manual segmentation results defined by expert. In our experimental results, the newly proposed method avoids a leakage into the neighboring regions having similar intensity of femoral cartilage, and shows improved segmentation accuracy.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr