디지털 라이브러리[ 검색결과 ]
검색 : [ author: 마니칸단 사란야 ] (1)
Gated Tab Transformer를 사용한 향상된 소프트웨어 결함 예측
http://doi.org/10.5626/JOK.2025.52.3.196
소프트웨어 결함 예측(SDP)은 소프트웨어 품질과 신뢰성을 확보하는 데 중요한 역할을 한다. 전통적인 기계 학습 및 딥 러닝 모델이 SDP에 널리 사용되었지만, 최근 자연어 처리 기술의 발전은 소프트웨어 공학 작업에 트랜스포머 기반 모델을 적용할 수 있는 가능성을 열었다. 본 논문에서는 Gated Tab Transformer(GTT)를 SDP에 적용하여 그 효과를 평가하였다. 15개의 소프트웨어 결함 데이터셋을 사용하여 실험을 진행하고, 최신 기계 학습 및 딥 러닝 모델과 비교한다. 실험 결과, GTT는 리콜, 균형, AUC 측면에서 각각 42.1%, 10.93%, 7.1%의 최첨단 머신 러닝 성능을 능가하는 것으로 나타났다. Cohen’s d 분석 결과, GTT는 이러한 성능 지표에서 큰 효과 크기 또는 중간 수준의 효과 크기를 나타냈다. 추가로, 하이퍼파라미터 변동이 성능에 미치는 영향을 분석한 소거 연구를 통해 GTT의 성능을 평가하였다. GTT의 뛰어난 성능은 SDP 문제 해결에 기여할 수 있으며, 이를 통해 테스트 자원의 효율적인 할당과 소프트웨어 품질 개선이 가능할 것으로 기대된다.