Search : [ author: 정희석 ] (3)

Dovetail Usage Prediction Model for Resource-Efficient Virtual Machine Placement in Cloud Computing Environment

Hyeongbin Kang, Hyeon-Jin Yu, Jungbin Kim, Heeseok Jeong, Jae-Hyuck Shin, Seo-Young Noh

http://doi.org/10.5626/JOK.2023.50.12.1041

As IT services have migrated to the cloud, efficient resource management in cloud computing environments has become an important issue. Consequently, research has been conducted on virtual machine placement(VMP), which can increase resource efficiency without the need for additional equipment in data centers. This paper proposes the use of a usage prediction model as a method for selecting and deploying hosts suitable for virtual machine placement. The dovetail usage prediction model, which improves the shortcomings of the existing usage prediction models, measures indicators such as CPU, disk, and memory usage of virtual machines running on hosts and extracts features using a deep learning model by converting them into time series data. By utilizing this approach in virtual machine placement, hosts can be used efficiently while ensuring appropriate load balancing of the virtual machines.

Kor-Eng NMT using Symbolization of Proper Nouns

Myungjin Kim, Junyeong Nam, Heeseok Jung, Heeyoul Choi

http://doi.org/10.5626/JOK.2021.48.10.1084

There is progress in the field of neural machine translation, but there are cases where the translation of sentences containing proper nouns, such as, names, new words, and words that are used only within a specific group, is not accurate. To handle such cases, this paper uses the Korean-English proper noun dictionary and the symbolization method in addition to the recently proposed translation model, Transformer Model. In the proposed method, some of the words in the sentences used for learning are symbolized using a proper noun dictionary, and the translation model is trained with sentences including the symbolized words. When translating a new sentence, the translation is completed by symbolizing, translation, and desymbolizing. The proposed method was compared with a model without symbolization, and for some cases improvement was quantitatively confirmed with the BLEU score. In addition, several examples of translation were also presented along with commercial service results.

Metadata Extraction based on Deep Learning from Academic Paper in PDF

Seon-Wu Kim, Seon-Yeong Ji, Hee-Seok Jeong, Hwa-Mook Yoon, Sung-Pil Choi

http://doi.org/10.5626/JOK.2019.46.7.644

Recently, with a rapid increase in the number of academic documents, there has arisen a need for an academic database service to obtain information about the latest research trends. Although automated metadata extraction service for academic database construction has been studied, most of the academic texts are composed of PDF, which makes it difficult to automatically extract information. In this paper, we propose an automatic metadata extraction method for PDF documents. First, after transforming the PDF into XML format, the coordinates, size, width, and text feature in the XML markup token are extracted and constructed as a vector form. Extracted feature information is analyzed using Bidirectional GRU-CRF, which is an deep learning model specialized for sequence labeling, and finally, metadata are extracted. In this study, 10 kinds of journals among various domestic journals were selected and a training set for metadata extraction was constructed and experimented using the proposed methodology. As a result of extraction experiment on 9 kinds of metadata, 88.27% accuracy and 84.39% F1 performance was obtained.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr