Digital Library[ Search Result ]
Face Detection using Orientation(In-Plane Rotation) Invariant Facial Region Segmentation and Local Binary Patterns(LBP)
Hee-Jae Lee, Ha-Young Kim, David Lee, Sang-Goog Lee
http://doi.org/10.5626/JOK.2017.44.7.692
Face detection using the LBP based feature descriptor has issues in that it can not represent spatial information between facial shape and facial components such as eyes, nose and mouth. To address these issues, in previous research, a facial image was divided into a number of square sub-regions. However, since the sub-regions are divided into different numbers and sizes, the division criteria of the sub-region suitable for the database used in the experiment is ambiguous, the dimension of the LBP histogram increases in proportion to the number of sub-regions and as the number of sub-regions increases, the sensitivity to facial orientation rotation increases significantly. In this paper, we present a novel facial region segmentation method that can solve in-plane rotation issues associated with LBP based feature descriptors and the number of dimensions of feature descriptors. As a result, the proposed method showed detection accuracy of 99.0278% from a single facial image rotated in orientation.
Face Representation Based on Non-Alpha Weberface and Histogram Equalization for Face Recognition Under Varying Illumination Conditions
Ha-Young Kim, Hee-Jae Lee, Sang-Goog Lee
Facial appearance is greatly influenced by illumination conditions, and therefore illumination variation is one of the factors that degrades performance of face recognition systems. In this paper, we propose a robust method for face representation under varying illumination conditions, combining non-alpha Weberface (non-alpha WF) and histogram equalization. We propose a two-step method: (1) for a given face image, non-alpha WF, which is not applied a parameter for adjusting the intensity difference between neighboring pixels in WF, is computed; (2) histogram equalization is performed to non-alpha WF, to make a uniform histogram distribution globally and to enhance the contrast. (2D)²PCA is applied to extract low-dimensional discriminating features from the preprocessed face image. Experimental results on the extended Yale B face database and the CMU PIE face database show that the proposed method yielded better recognition rates than several illumination processing methods as well as the conventional WF, achieving average recognition rates of 93.31% and 97.25%, respectively.
Motor Imagery EEG Classification Method using EMD and FFT
David Lee, Hee-Jae Lee, Sang-Goog Lee
Electroencephalogram (EEG)-based brain-computer interfaces (BCI) can be used for a number of purposes in a variety of industries, such as to replace body parts like hands and feet or to improve user convenience. In this paper, we propose a method to decompose and extract motor imagery EEG signal using Empirical Mode Decomposition (EMD) and Fast Fourier Transforms (FFT). The EEG signal classification consists of the following three steps. First, during signal decomposition, the EMD is used to generate Intrinsic Mode Functions (IMFs) from the EEG signal. Then during feature extraction, the power spectral density (PSD) is used to identify the frequency band of the IMFs generated. The FFT is used to extract the features for motor imagery from an IMF that includes mu rhythm. Finally, during classification, the Support Vector Machine (SVM) is used to classify the features of the motor imagery EEG signal. 10-fold cross-validation was then used to estimate the generalization capability of the given classifier., and the results show that the proposed method has an accuracy of 84.50% which is higher than that of other methods.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr