검색 : [ author: Hongchul Lee ] (1)

데이터셋 품질 개선을 위한 Self-Supervised Vision Transformer 기반의 객체 Pseudo-label 생성 기법

김도현, 전지웅, 임성택, 이홍철

http://doi.org/10.5626/JOK.2024.51.1.49

이미지 분할은 이미지에 존재하는 객체를 객체 상자로 지역화하고 픽셀을 적절한 범주로 분류하는 컴퓨터 비전의 중요한 분야 중 하나이다. Instance segmentation 모델의 성능을 위해서는 다양한 크기의 객체에 대한 라벨을 가진 데이터셋이 요구된다. 하지만 최근 공개된 ‘Small Object Detection을 위한 이미지’ 데이터셋은 크기가 크고 일반적인 객체에 대한 라벨이 부족하여 잠재적 성능 저하를 유발한다. 본 논문에서는 위와 같은 문제를 해결하기 위해 비지도 학습 기반의 pseudo-labeling 방법론을 응용하여 일반적인 객체에 대한 pseudo-label을 생성함으로써 데이터셋의 품질을 개선한다. 실험결과, 기존 데이터셋 대비 작은 객체 분할 성능이 (+2.54 AP) 증가하였다. 추가적으로 적은 양의 데이터를 이용한 경우에서도 성능의 증가도 확인할 수 있었다. 이에 따라 제안된 방법론을 통해 효과적으로 데이터셋의 품질이 개선된 것을 확인할 수 있었다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr