디지털 라이브러리[ 검색결과 ]
말뭉치와 형태소 분석기를 활용한 한국어 자동 띄어쓰기
본 논문에서는 띄어쓰기가 전혀 되어 있지 않은 문자열을 입력 받아 말뭉치에서 추출한 어절정보를 이용하여 자동 띄어쓰기를 해 주는 방법론을 제안한다. 형태소 분석기도 사용되나 오류 수정이라는 제한적인 용도로만 사용된다. 성능 평가를 위해 1,000만 어절 규모의 세종 말뭉치에서 순수 한글 585만 어절을 발췌하여 10 개의 세트로 나누고 10 배수 교차 검증을 실시한 결과 98.06%의 음절 정확도와 94.15%의 어절 재현율을 얻었다. 또한, 개인용 컴퓨터에서 초당 25만 어절, 1.8 MB의 문서를 처리할 수 있을 정도로 빠르다. 제안된 방법의 정확도나 재현율은 어절 사전의 크기에 영향을 받기 때문에 보다 큰 말뭉치로 어절 사전을 구축하면 성능이 더욱 향상될 것으로 기대된다.
한국어 형태소 분석을 위한 음절 단위 확률 모델
본 논문에서는 음절 단위의 한국어 형태소 분석 방법에 적용할 수 있는 세 가지 확률 모델을 제안하고, 품사 태깅 말뭉치를 이용하여 각 확률 모델의 성능을 평가한다. 성능 평가를 위해 1,000만 어절규모의 세종 말뭉치를 10 개의 세트로 나누고 10 배수 교차 검증 결과 98.4%의 정답 제시율을 얻을 수 있었다. 제안된 확률 모델은 각 음절에 대하여 품사 태그를 먼저 부착한 후 원형 복원 및 형태소 생성을 하기 때문에 원형 복원을 먼저 하는 기존 확률 모델에 비하여 탐색 공간이 크게 줄어들어 형태소 분석 과정이 훨씬 간결하고 효율적이어서 분석 속도가 기존의 초당 수 백 어절에서 14만 7천 어절로 약 174배 가량 향상시킬 수 있었다.