검색 : [ author: Soojong Lim ] (5)

BERT를 이용한 한국어 의미역 결정

배장성, 이창기, 임수종, 김현기

http://doi.org/10.5626/JOK.2020.47.11.1021

의미역 결정은 문장 내에서 “누가, 무엇을, 어떻게, 왜” 등의 관계를 찾아내는 자연어처리의 한 응용이다. 최근 의미역 결정 연구는 주로 기계학습을 이용하고 자질 정보를 배제한 종단 대 종단(end-to-end) 방식의 연구가 이루어지고 있다. 최근 BERT(Bidirectional Encoder Representations from Transformers)라는 언어 모델이 자연어처리 분야에 등장하여 기존 자연어처리 분야의 최고 성능 모델들 보다 더 좋은 성능을 보이고 있다. 종단 대 종단 방식을 이용한 의미역 결정 연구의 성능은 주로 기계학습 모델의 구조나 사전에 학습된 언어 모델의 영향을 받는다. 따라서 본 논문에서는 한국어 의미역 결정성능 향상을 위해 BERT를 한국어 의미역 결정에 적용한다. 실험 결과 BERT를 이용한 한국어 의미역 결정 모델의 성능이 85.77%로 기존 한국어 의미역 결정 모델들 보다 좋은 성능을 보였다.

의미 프레임과 유의어 클러스터를 이용한 한국어 의미역 인식

임수종, 임준호, 이충희, 김현기

http://doi.org/

기계학습 기반의 의미역 인식에서 어휘, 구문 정보가 자질로 주로 쓰이지만, 의미 정보를 분석하는 의미역 인식은 의미 정보 또한 매우 유용한 정보이다. 그러나, 기존 연구에서는 의미 정보를 활용할 수 있는 방법이 제한되어 있기 때문에, 소수의 연구만 진행되었다. 본 논문에서는 의미 정보를 활용하는 방안으로 동형이의어 수준의 의미 애매성 해소 기술, 고유 명사에 대한 개체명 인식 기술, 의미 정보에 기반한 필터링, 유의어 사전을 이용한 클러스터 및 기존 의미 프레임 정보 확장, 구문-의미 정보 연동 규칙, 필수 의미역 오류 보정 등을 제안한다. 제안하는 방법은 기존 연구 대비 뉴스 도메인인 Korean Propbank 는 3.77, 위키피디아 문서 기반의 Exobrain GS 3.0 평가셋에서는 8.05의 성능 향상을 보였다.

기분석사전과 기계학습 방법을 결합한 음절 단위 한국어 품사 태깅

이충희, 임준호, 임수종, 김현기

http://doi.org/

본 논문은 음절 단위 한국어 품사 태깅 방법의 성능 개선을 위해 기분석사전과 기계학습 방법을 결합하는 방법을 제안한다. 음절 단위 품사 태깅 방법은 형태소분석을 수행하지 않고 품사 태깅만을 수행하는 방법이며, 순차적 레이블링(Sequence Labeling) 문제로 형태소 태깅 문제를 접근한다. 본 논문에서는 순차적 레이블링 기반 음절 단위 품사 태깅 방법의 전처리 단계로 품사 태깅말뭉치와 국어사전으로부터 구축된 복합명사 기분석사전과 약 1천만 어절의 세종 품사 태깅말뭉치로부터 자동 추출된 어절 사전을 적용함으로써 품사 태깅 성능을 개선시킨다. 성능 평가를 위해서 약 74만 어절의 세종 품사 태깅말 뭉치로부터 67만 어절을 학습 데이터로 사용하고 나머지 7만 4천 어절을 평가셋으로 사용하였다. 기계학습 방법만을 사용한 경우에 96.4%의 어절 정확도를 보였으며, 기분석사전을 결합한 경우에는 99.03%의 어절 정확도를 보여서 2.6%의 성능 개선을 달성하였다. 퀴즈 분야의 평가셋으로 실험한 경우에도 기계학습 엔진은 96.14% 성능을 보인 반면, 하이브리드 엔진은 97.24% 성능을 보여서 제안 방법이 다른 분야에도 효과적임을 확인하였다.

도메인 적응 기술을 이용한 한국어 의미역 인식

임수종, 배용진, 김현기, 나동렬

http://doi.org/

높은 성능의 의미역 인식 시스템의 개발을 위해서는 대상 도메인에 대한 대량의 수동 태깅 학습 데이터가 필요하다. 그러나 충분한 크기의 의미역 인식용 학습 데이터는 오직 소수의 도메인에서만 존재한다. 소스 도메인의 시스템을 상대적으로 매우 작은 학습 데이터를 가진 다른 도메인에 적용할 경우 한국어 의미역 인식 기술은 15% 정도 성능 하락이 발생한다. 이러한 도메인 변경에서의 성능 하락 현상을 최소화하기 위해 본 논문에서는 2 가지 기법을 제시한다. 첫째, 도메인 적응 방법론의 하나인 Prior 모델에 기반하여 개발된 한국어 의미역 인식 시스템을 위한 도메인 적응 알고리즘을 제안한다. 둘째, 크기가 작은 타겟 도메인 데이터를 이용할 때 데이터 희귀 문제의 감소를 위해 소스 도메인 데이터 이용시 보다 단순화된 형태소 태그와 구문 태그 자질을 사용할 것을 제안한다. 뉴스 도메인에서 개발된 시스템의 위키피디아 도메인에의 적용과 관련하여 다른 연구의 도메인 적응 기술과 우리가 제안한 방법을 비교 실험하였다. 우리의 두 가지 방법을 같이 사용할 때 더 높은 성능을 달성하는 것을 관찰하였다. 우리 시스템은 F1-score 64.3% 성능으로서 기존의 다른 도메인 적응 기술들과 비교하여 2.4~3.1% 더 높은 성능을 가지는 것으로 관찰되었다.

Structural SVM 기반의 한국어 의미역 결정

이창기, 임수종, 김현기

http://doi.org/

의미역 결정은 자연어 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 문제이다. 일반적으로 의미역 결정을 위해서는 서술어 인식(Predicate Identification, PI), 서술어 분류(Predicate Classification, PC), 논항 인식(Argument Identification, AI) 논항 분류(Argument Classification, AC) 단계가 수행된다. 본 논문에서는 한국어 의미역 결정 문제를 위해 Korean Propbank를 의미역 결정 학습 말뭉치로 사용하고, 의미역 결정 문제를 Sequence Labeling 문제로 바꾸어 이 문제에서 좋은 성능을 보이는 Structural SVM을 이용하였다. 실험결과 서술어 인식/분류(Predicate Identification and Classification, PIC)에서는 97.13%(F1)의 성능을 보였고, 논항 인식/분류(Argument Identification and Classification, AIC)에서는 76.96%(F1)의 성능을 보였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr