검색 : [ author: Yun-Geun Kim ] (3)

온톨로지와 CNN 기반의 무인기와 주변 개체 간 위협 관계 추론

전명중, 이민호, 박현규, 박영택, 윤형식, 김윤근

http://doi.org/10.5626/JOK.2020.47.4.404

무인기 스스로 주변 개체와의 관계를 파악하고 상황을 인지하는 기술은 다양한 분야에서 필요로 하는 기술이다. 이를 위해 다양한 방법이 연구되고 있다. 대부분의 연구는 관련 도메인의 지식을 온톨로지로 구축하고 이를 기반으로 지식 추론하는 방식으로 해결하고 있다. 하지만 이러한 방식은 관련 도메인 지식을 가진 전문가의 의존성 때문에 전문가의 부재 시, 새로운 상황에 대해 대처할 지식을 구축하기가 어렵다. 또한 전문가가 고려하지 못한 상황을 추론하기 위한 지식을 구축하기가 어렵다. 그래서 본 연구에서는 이와 같은 문제를 해결하기 위해 온톨로지와 CNN을 이용하여 무인기와 주변 개체 간의 관계를 추론하기 위한 모델을 구축하는 방식을 제안한다. 온톨로지 추론의 정확도는 부족하다는 가정에서 감지된 주변 개체들의 정보를 활용하여 온톨로지 추론을 먼저 수행한다. 그리고 온톨로지 추론 결과는 CNN을 사용하여 보정한다. 실제 데이터 확보의 한계로 인해 데이터 생성기를 구축하여 실 데이터와 유사한 데이터를 생성하였다. 본 연구의 평가를 위해 2가지 개체 간 관계에 대한 모델을 구축하여 평가하였으며 두 관계 모델 모두 90% 이상의 정확도를 보였다.

온톨로지 기반 무인기의 자율 위협 상황 인지 시스템

전명중, 박현규, 박영택, 윤형식, 김윤근

http://doi.org/10.5626/JOK.2019.46.10.1044

무인기의 자율적인 위협 상황 인지는 다양한 분야에서 필요한 기술이다. 이를 위해 다양한 접근 방식이 제안되었지만 대부분은 개체의 의미 정보를 추론하기 위한 방식이다. 따라서 본 연구에서는 기존 개체의 의미적 정보를 기반으로 개체 간 관계 추론을 통해 무인기의 위협 상황을 인지할 수 있는 방법을 제안한다. 본 연구에서는 크게 3가지 방법을 통해 UAV의 위협 상황을 인지한다. 첫 번째로 LOD기반 그리드 맵을 사용하여 인지된 의미적 개체의 정보를 표현한다. 두 번째로 무인기 주변 개체들에 대한 개념들을 온톨로지로 정의하고 개체 간 관계 및 상황은 SWRL로 정의한다. 세 번째로 온톨로지 추론을 통하여 개체 간 관계 및 무인기의 위협 상황을 인지하고 시뮬레이터 시스템을 구축하여 이를 시각화한다.

무인기와 주변 개체간의 위협 관련 관계추론을 통한 무인기 상황인지 기법

배석현, 전명중, 박현규, 박영택, 윤형식, 김윤근

http://doi.org/10.5626/JOK.2019.46.2.141

무인기의 기술적 성능이 향상됨에 따라 무인기가 각종 위험을 스스로 인지하고 회피하면서 목표 지역에 접근하기 위해 지능적으로 UAV의 상황을 분석하고 이해하려는 연구가 활발하다. 무인기의 임무를 달성하기 위해서는 빠른 상황 판단과 함께 정확한 상황 판단이 요구된다. 이를 위해 본 논문에서는 3단계의 접근방식을 통하여 무인기와 인지된 주변 개체 간의 위협 관련 관계를 추론하고 이를 기반으로 무인기의 상황을 추상화된 정보로 제공하는 방법을 제안한다. 첫 번째 단계는 무인기가 인지한 개체 데이터를 온톨로지 및 규칙 추론에 활용하기 위해 개체화 하는 것이다. 두 번째 단계는 개체화된 데이터에 대해 개체 간 위협과 관련된 추론의 우선순위를 정의하고 이들 간의 관계 추론을 한다. 마지막으로 현재 추론된 관계들과 과거에 추론된 관계들 간의 연관성을 고려한 관계 추론을 통하여 상황을 인지한다. 제안한 방식의 성능 평가를 위해 가상의 무인기 환경 시뮬레이터를 구축하고 순차적인 5개의 무인기 이동 포인트 경로를 무작위로 1,000번 생성하여 실험하였다. 무인기 이동 경로에서 8종류의 개체를 인지할 수 있으며, 10종류의 관계를 추론할 수 있다. 그리고 전체적인 추론 인지 성능은 평균 91% 이다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr