Digital Library[ Search Result ]
ConvLSTM-Based COVID-19 Outbreak Prediction using Feature Combination of Multivariate Dataset
Yejin Kim, Seokyeon Kim, Yun Jang
http://doi.org/10.5626/JOK.2021.48.4.405
COVID-19 is transmitted through the droplets expelled by infected people. The propagation of splash is affected by space-time. The transmission of infectious diseases depends on the interaction of various factors such as the health status of the infected and the non-infected people and different environmental factors. However, it is difficult to include all information related to the epidemic in the predictive model and understand the relationship between the information. In this research, we propose a method to include the infectious features of COVID-19 in a learning dataset of the deep learning model and understand the effect of the combination of COVID-19 spreading data on the predictive performance of deep learning. Before predicting, the infectious features of COVID-19 are identified and considerations for including the COVID-19 spreading features are defined in the data preprocessing step. In deep learning modeling, a prediction model using ConvLSTM is designed for spatiotemporal prediction. In the process of testing the model, various features related to COVID-19 spread are combined and the effect of the combination on the performance of the model is analyzed. We tested 120 feature combinations with 47 features composed of personal information of confirmed patients and spatial characteristics of the places that they had visited. We used MAPE as an indicator to evaluate performance of the models. In the case of COVID-19 dataset, the MAPE value of the model with combined features was 1.234, and that of the model with not combined features was 2.217.
Spatiotemporal Data Visualization using Gravity Model
Seokyeon Kim, Hanbyul Yeon, Yun Jang
Visual analysis of spatiotemporal data has focused on a variety of techniques for analyzing and exploring the data. The goal of these techniques is to explore the spatiotemporal data using time information, discover patterns in the data, and analyze spatiotemporal data. The overall trend flow patterns help users analyze geo-referenced temporal events. However, it is difficult to extract and visualize overall trend flow patterns using data that has no trajectory information for movements. In order to visualize overall trend flow patterns, in this paper, we estimate continuous distributions of discrete events over time using KDE, and we extract vector fields from the continuous distributions using the gravity model. We then apply our technique on twitter data to validate techniques.
Visual Analytics for Abnormal Event detection using Seasonal-Trend Decomposition and Serial-Correlation
In this paper, we present a visual analytics system that uses serial- correlation to detect an abnormal event in spatio-temporal data. Our approach extracts the topic-model from spatio-temporal tweets and then filters the abnormal event candidates using a seasonal-trend decomposition procedure based on Loess smoothing (STL). We re-extract the topic from the candidates, and then, we apply STL to the second candidate. Finally, we analyze the serial- correlation between the first candidates and the second candidate in order to detect abnormal events. We have used a visual analytic approach to detect the abnormal events, and therefore, the users can intuitively analyze abnormal event trends and cyclical patterns. For the case study, we have verified our visual analytics system by analyzing information related to two different events: the ‘Gyeongju Mauna Resort collapse’ and the ‘Jindo-ferry sinking’.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr