디지털 라이브러리[ 검색결과 ]
Health State Clustering and Prediction Based on Bayesian HMM
http://doi.org/10.5626/JOK.2017.44.10.1026
본 논문은 계층적 디리슐레 과정(HDP)과 은닉 마르코프 모형(HMM)이 결합된 베이스 통계학적 방법과 HMM의 상태 지속 정보를 이용한 건강 상태 예측 방법을 제안한다. HDP-HMM은 베이스 방법의 HMM 확장 모형으로서 건강의 동적 특성을 고려하여 불확실하고 가늠하기조차도 어려운 건강 상태의 수를 추정할 수 있게 해준다. 모의 데이터와 실제 건건 검진 데이터를 이용한 시험을 통하여 흥미 있는 행동 특성을 볼 수 있었으며 최대 5년까지로 제한한 미래 예측도 충분한 가능함을 확인하였다. 미래는 불확실하며 예측 문제는 본질적으로 어렵다. 그러나 본 연구의 실험 결과로 동적인 문맥 하에서 다중 후보 가설을 제시함으로서 실용 가능한 건강상태의 장기 예측이 가능하다는 것을 읽을 수 있었다.
유사 시계열 데이터 분석에 기반을 둔 교육기관의 전력 사용량 예측 기법
http://doi.org/10.5626/JOK.2017.44.9.954
안정적인 전력 공급은 전력 인프라의 유지 보수 및 작동에 매우 중요하며, 이를 위해 정확한 전력 사용량 예측이 요구된다. 대학 캠퍼스는 전력 사용량이 많은 곳이며, 시간과 환경에 따른 전력 사용량 변화폭이 다양하다. 이러한 이유로, 전력계통의 효율적인 운영을 위해서는 전력 사용량을 정확하게 예측할 수 있는 모델이 요구된다. 기존의 시계열 예측 기법은 학습 시점과 예측 시점 간의 차이가 클수록 예측 구간이 넓어짐으로 예측 성능이 크게 떨어진다는 단점이 있다. 본 논문은 이를 보완하려는 방안으로, 먼저 의사결정나무를 이용해 날짜, 요일, 공휴일 여부, 학기 등을 고려하여 시계열 형태가 유사한 전력 데이터를 분류한다. 다음으로 분류된 데이터 셋에 각각의 자기회귀누적이동평균모형을 구성하여, 예측 시점에서 시계열 교차검증을 적용해 대학 캠퍼스의 일간 전력 사용량 예측 기법을 제안한다. 예측의 정확성을 평가하기 위해, 성능 평가 지표를 이용하여 제안한 기법의 타당성을 검증하였다.
딥러닝과 통계 모델을 이용한 T-커머스 매출 예측
김인중, 나기현, 양소희, 장재민, 김윤종, 신원영, 김덕중
http://doi.org/10.5626/JOK.2017.44.8.803
T-커머스는 양방향 디지털 TV를 기반으로 양방향 데이터방송 기술을 활용하여 상거래를 하는 기술융합형 서비스이다. 채널 번호와 판매상품이 제한된 환경에서 T-커머스의 매출을 극대화 하기 위해서는 각 제품의 시간대별 경쟁력을 고려하여 매출이 최대화 되도록 프로그램을 편성해야 한다. 이를 위해, 본 논문에서는 딥러닝을 이용해 T-커머스에서 각 상품을 각 시간대에 편성하였을 때의 매출을 예측하는 방법을 제안한다. 제안하는 방법은 심층신경망을 이용해 판매 상품과 시간대, 주차, 휴일 여부, 그리고 날씨를 입력 받아 실제 방송으로 편성했을 때 기대되는 매출을 예측한다. 그리고, 통계적 모델과 SVD (Singular Value Decomposition)를 적용하여 판매 데이터의 편중 및 희박성 문제를 완화한다. 실제 T-커머스 운영자인 (주)더블유쇼핑의 판매 기록 데이터에 대하여 실험하였을 때 실제 매출과 예측치의 차이가 0.12의 NMAE(Normalized Mean Absolute Error)를 보여 제안하는 알고리즘이 효과적으로 동작함을 확인하였다. 제안된 시스템은 (주)더블유쇼핑의 T-커머스 시스템 적용되어 방송 편성에 활용되었다.
인기 검색어의 순위 변화 예측
http://doi.org/10.5626/JOK.2017.44.8.782
인기 검색어 리스트는 현재 가장 인기 있는 검색어의 순위를 보여주는 서비스로서 네이버와 같은 포털사이트가 제공한다. 이 리스트에서의 순위 변화는 특정 검색어에 대한 사람들의 관심의 변화를 반영한다. 본 논문은 인기 검색어의 순위 변화를 예측하기 위해 시계열 모델링 프레임워크를 제안한다. 제안한 프레임워크는 과거 순위와 기계학습 모델이 적용되었고, 여기서 해결해야 할 두 가지 문제점이 있다. 첫째, 과거 순위 데이터를 분석한 결과, 70% 이상의 검색어가 리스트에서 소멸 후 재출현하는 현상을 보였다. 소멸 후의 순위는 손실 값으로 볼 수 있으며, 이를 해결하기 위해서 다양한 처리 방법을 적용하였다. 둘째, 과거 순위 데이터는 시계열 데이터이므로 최적 윈도우 크기를 계산하는 것이 중요하다. 본 논문에서는 최적 윈도우 크기는 동일한 검색어들이 서로 다른 두 시점에서 내용상 의미가 달라지는 최단 소멸기간으로 볼 수 있음을 밝혔다. 성능 평가를 위해서 4가지의 기계학습 기법과 2년 동안 수집한 네이버, 다음, 네이트의 인기 검색어 리스트 데이터를 사용하였다.
딥러닝 기반 침수 수위 예측
http://doi.org/10.5626/JOK.2017.44.6.607
도시에서 홍수 피해를 방지하기 위한 침수를 예측하기 위해 본 논문에서는 딥러닝(Deep Learning)기법을 적용한다. 딥러닝 기법 중 시계열 데이터 분석에 적합한 Recurrent Neural Networks (RNNs)을 활용하여 강의 수위 관측 데이터를 학습하고 침수 가능성을 예측하였다. 예측 정확도 검증을 위해 사용한 데이터는 미국의 트리니티 강의 데이터로, 학습을 위해 2013 년부터 2015 년까지 데이터를 사용하였고 평가 데이터로는 2016 년 데이터를 사용하였다. 입력은 16개의 레코드로 구성된 15분단위의 시계열 데이터를 사용하였고, 출력으로는 30분과 60분 후의 강의 수위 예측 정보이다. 실험에 사용한 딥러닝 모델들은 표준 RNN, RNN-BPTT(Back Propagation Through Time), LSTM(Long Short-Term Memory)을 사용했는데, 그 중 LSTM의 NE(Nash Efficiency)가 0.98을 넘는 정확도로 기존 연구에 비해 매우 높은 성능 향상을 보였고, 표준 RNN과 RNN-BPTT에 비해서도 좋은 성능을 보였다.
평점 빈도 가중치 기반 기준선 예측기의 추천 성능 향상을 위한 편향 기반 추천기
협업 필터링(CF, Collaborative Filtering)은 추천을 수행하기 위해 필요한 비용(시간/공간 복잡도 등)이 현실 데이터에 적용하기에는 한계가 있다. 평점 빈도 가중치 기반의 Baseline Predictor(RFWBP, Rating Frequency Weight-based Baseline Predictor)는 정확도가 기존의 방법과 근사하며, 비용을 크게 줄일 수 있는 효율적인 방법 중 하나이다. 그러나 효율성을 고려해 RFWBP만 사용할 경우, 1)학습을 수행하지 않기 때문에 발생되는 오차를 감소시킬 수 없고, 2)적합한 추천 목록을 작성하기 위한 조건이 없기 때문에 모두 추천했다. 본 논문은, 제시된 문제를 해결하기 위한 BBP(Bias-Based Predictor)를 제안한다. BBP는 Bias를 보정하여 오차의 범위를 감소시킴으로써 1)을 해결했고, 선호에 적합한 추천 목록 작성을 위한 몇 가지 Case를 정하고, 추천 목록을 구성함으로써 2)를 해결하였다.
웨어러블 센서를 이용한 사건인지 기반 일상 활동 예측
실제 환경에서 사람의 일상적인 활동을 학습하는 기술은 스마트 비서나 자율지능 로봇과 같은 인지 지능 시스템 개발을 위해 필요한 핵심 기술이다. 일상을 예측하는 대다수의 연구들은 센서 데이터의 패턴과 일상 활동 사이의 직접적인 상관관계를 탐색하는 것에 집중하였다. 하지만 일상에서의 인간 활동은 하나의 레이블로 표현하기 어려운 다수의 사건 집합이고 또한 서술 가능한 특성을 지니고 있다. 본고에서는 일상을 구성하는 사건 요소들을 우선 인식하고, 이후 일상 활동을 학습 및 예측하는 방법을 제안한다. 제안하는 방법은 개인의 일상에서 웨어러블 장치와 스마트폰으로부터 수집된 일인칭 시점의 멀티 센서 데이터로부터 위치 좌표, 장면 영상, 그리고 신체적 움직임에 기인한 사건 요소들을 각각 인식한 뒤, 이 정보들이 특정 활동 내역에 따라 조합되는 규칙을 학습하여 최종적으로 사용자의 일상 활동을 예측한다. 두명의 실험 참가자가 각각 2주간 수집한 센서 데이터를 이용하여 실험한 결과는 제안한 방법이 센서 데이터로부터 추출된 특징을 일차적으로 사용하여 분류하는 기존의 방법과 비교하여 향상된 성능을 보였다.
스트리밍 데이터에서 확률 예측치를 이용한 효과적인 개념 변화 탐지 방법
스트리밍 데이터 분석에서 개념 변화가 일어나는 시점을 정확히 탐지하는 것은 분류 모델의 성능을 유지하는 데 있어서 매우 중요한 작업이다. 오류율은 스트리밍 데이터에서 개념 변화 탐지를 위해 많이 사용되는 척도이다. 그러나 0과 1로 이루어진 이진 값만으로 예측 결과를 묘사하는 것은 분류 모델의 행동 패턴을 나타내는 유용한 정보의 손실을 초래할 수 있다. 이 논문에서는 오류율을 이용하는 대신에 확률 예측치를 사용하여 분류기의 성능 패턴을 묘사하고 급격한 변화를 탐지하는 효과적인 개념 변화 탐지 방법을 제안한다. 합성데이터와 실제 스트리밍 데이터를 이용한 실험 결과는 제안한 방법이 개념 변화 시점을 탐지하는데 뛰어난 성능을 가짐을 보여준다.
MOnCa2: 지능형 스마트폰 어플리케이션을 위한 사용자 이동 행위 인지와 경로 예측기반의 고수준 콘텍스트 추론 프레임워크
MOnCa2는 스마트폰에 장착된 센서와 온톨로지 추론 기반의 지능형 스마트폰 어플리케이션 구축을 위한 프레임워크다. 기존에 연구되었던 MOnCa는 온톨로지 인스턴스로 등록된 센서 값에 대한 정보를 바탕으로 사용자의 현재 상황을 판단 및 추론하였다. 이러한 방식은 사용자의 공간 정보나 주변에 존재하는 객체가 무엇인지 판단하는 것은 가능하나 사용자의 물리적인 콘텍스트(이동 행위, 이동할 목적지 등등) 판단하는 것은 불가능했다. 본 논문에서 설명하는 MOnCa2는 사용자 개개인의 물리적인 콘텍스트를 판단 및 추론하기 위해 스마트폰의 장착된 센서를 바탕으로 행위 및 이동 상황에 대응하는 인지 모델을 구축하고, 구축된 모델을 기반으로 사용자의 실시간 행위 및 이동 상황에 대해 1차적인 추론을 수행하며, 추론된 1차적인 콘텍스트에 대해 온톨로지 기반의 2차 추론을 통해 지능형 어플리케이션에 필요한 고수준 사용자 콘텍스트를 생산한다. 따라서 본 논문은 스마트폰의 가속도 센서를 기반으로 사용자의 이동에 필요한 행위를 인지하는 기법, 스마트폰의 GPS 신호를 바탕으로 이동 목적지와 경로를 예측하는 기법, 온톨로지 실체화를 적용하여 고수준 콘텍스트를 추론하는 과정에 초점을 맞추어 설명을 한다.
센서 정보의 안정적인 이용을 위한 경로 예측 기반 센서 레지스트리 시스템
센서 레지스트리 시스템은 이기종 센서 네트워크 환경에서 센서 데이터의 즉시적 활용 및 끊김 없는 해석을 위해 개발되었다. 그러나 기존 센서 레지스트리 시스템은 불안정한 네트워크 상황에서 센서 데이터 해석을 위한 정보를 제공하지 못하며, 이로 인해 센서 데이터의 손실, 처리 결과의 부정확성, 서비스 품질 저하 등의 문제를 야기한다. 이 논문에서는 소프트웨어 관점에서 이러한 문제점을 해결할 수 있는 방안을 제시한다. 사용자의 이동 경로를 예측하여 사전에 센서 정보를 이동 단말기에 제공함으로써 불완전한 네트워크 접속 시점에 안정적으로 센서 정보를 활용할 수 있는 확장된 센서 레지스트리 시스템을 제안하고 실험 및 평가 결과를 보인다. 이 논문에서 제안한 확장된 센서 레지스트리 시스템은 센서 정보의 안정적 활용성 증가와 더불어 센서 기반 서비스 품질을 향상시킨다.