디지털 라이브러리[ 검색결과 ]
자연어처리 분야에서의 임베딩 모델 평가 연구
http://doi.org/10.5626/JOK.2025.52.2.141
본 논문에서는 자연어처리(NLP) 분야의 주요 과제인 유사 텍스트 분석, 텍스트 분류, 질의 응답, 군집 분석 과제에 임베딩 기술을 적용하고, 그 성능을 평가하였다. 최근, 자연어처리 분야에서는 대규모 언어 모델의 발전과 함께 임베딩 기술이 다양한 응용 분야에서 중요한 역할을 하고 있다. 현재까지 여러 종류의 임베딩 모델이 공개되었고, 본 논문에서는 공개된 여러 임베딩 모델에 대한 성능을 평가했다. 이를 위해, 선정한 각 과제의 중간 과정으로써 임베딩 모델을 통한 벡터 값을 활용하여 각 과제별 임베딩 모델의 성능을 평가한다. 실험 데이터 셋은 공개된 한국어 및 영어 데이터 셋을 활용하였고, NLP 과제는 5가지로 정의하였다. 특히, 다국어, 교차 언어, 긴 문서 검색 등에서 탁월한 성능을 보인 BGE-M3 모델의 성능에 주목했다. 실험 결과, BG3-M3 모델이 3개의 NLP 과제에서 우수한 성능을 보였다. 본 연구의 결과는 최근의 검색 증강 생성(Retrieval-Augmented Generation)에서 유사 문장 또는 유사 문서를 찾기 위해 활용되는 임베딩 모델을 선택하는 데 있어 방향을 제시할 것으로 기대한다.
피드백 강화학습을 통한 검색 모델 개선
http://doi.org/10.5626/JOK.2024.51.10.900
오픈 도메인 질의응답 작업은 검색을 통해 단서를 얻고 문제를 해결하는 과정이다. 이러한 작 업에서 검색 모델이 적절한 단서를 제공하는 것은 매우 중요하며, 이는 최종 성능에 직접적인 영향을 미친 다. 또한, 정보 검색은 일상 생활에서도 빈번히 사용되는 중요한 기능이다. 본 논문에서는 이러한 문제의 중요성을 인식하고, 검색 모델의 성능 향상을 목표로 한다. 최근 디코더 모델에서 Reinforcement learning from human feedback(RLHF)을 통해 출력을 조정하는 방식이 자주 사용되고 있는 것처럼, 본 연구에서 는 강화학습을 활용하여 검색 모델을 강화하고자 한다. 구체적으로, 답변 모델의 손실과 검색 문서와 정답 문서 간의 유사도라는 두 가지 보상을 정의하고, 이를 바탕으로 강화학습을 적용하여 검색 모델의 문서 확 률 분포에서 1위 문서의 확률 점수를 조정한다. 이러한 방법을 통해 강화학습 방법의 일반성과 이를 통한 추가적인 성능 향상을 확인한다.
Analysis of the Semantic Answer Types to Understand the Limitations of MRQA Models
Doyeon Lim, Haritz Puerto San Roman, Sung-Hyon Myaeng
http://doi.org/10.5626/JOK.2020.47.3.298
최근 MRQA 모델들의 성능이 인간을 넘어섰다. 그리하여 MRQA 모델의 새로운 가능성들을 찾기 위해 새로운 데이터 셋들이 소개되고 있다. 하지만, 이전 MRQA모델들이 어떤 유형에서 문제를 잘풀고 어떤 한계점이 있는지 자세한 분석을 통해 새로운 데이터셋을 제시하는 경우는 거의 없었다. 이 연구에서는 MRQA가 극복했다고 여겨지는 SQuAD 데이터 셋을 분석하여 MRQA가 언어를 이해한 것이 아니라 특정한 패턴을 찾아냈다는 것을 밝혀낸다. 이 과정에서 기존 QA데이터 셋에서 주로 등장하는 wh-word와 Lexical Answer Type (LAT) 정보에 많은 모델들이 특히 집중하고 있다는 것을 밝히고, 그 때문에 질의와 문서의 정보를 충분히 이해하지 못하고 있다는 것을 정성, 정량적인 수치로 보였다. 이러한 분석을 바탕으로 앞으로 MRQA의 데이터셋의 방향과 모델들이 극복해야할 한계점을 제시하였다.
GuessWhat?! 문제에 대한 분석과 파훼
http://doi.org/10.5626/JOK.2018.45.1.30
GuessWhat?!은 질문자와 답변자로 구성된 두 플레이어가 이미지를 보고 질문자에게 비밀로 감추어진 정답 물체에 대해 예/아니오/잘 모르겠음 셋 중 하나로 묻고 답하며, 정답 물체를 추려 나가는 문제이다. GuessWhat?!은 최근 컴퓨터 비전과 인공지능 대화 시스템의 테스트베드로서 컴퓨터 비전과 인공지능 학계의 많은 관심을 받았다. 본 논문에서, 우리는 GuessWhat?! 게임 프레임워크가 가지는 특성에 대해 논의한다. 더 나아가, 우리는 제안된 틀을 기반으로 GuessWhat?!의 간단한 solution을 제안한다. 사람이 평균 4~5개 정도의 질문을 통하여 맞추는 이 문제에 대하여, 우리가 제안한 방법은 2개의 질문만으로 기존 딥러닝 기반 기술의 성능을 상회하는 성능을 보이며, 5개의 질문이 허용되면 인간 수준의 성능을 능가한다.
위키피디아 기반의 효과적인 개체 링킹을 위한 NIL 개체 인식과 개체 연결 중의성 해소 방법
http://doi.org/10.5626/JOK.2017.44.8.813
개체 링킹은 입력된 질의에 존재하는 개체를 표현한 개체 표현(entity mention)을 지식베이스에 존재하는 개체와 연결하여 의미를 파악하는 연구이다. 개체 링킹에 관한 연구는 지식 베이스 구축 문제, 다중 표현 문제, 개체 연결 중의성 문제, NIL 개체 인식 문제가 존재한다. 본 연구에서는 지식 베이스 구축 문제와 다중 표현 문제를 해결하기 위해 위키피디아를 기반으로 개체 이름 사전을 구축한다, 또한, 문맥 유사도, 의미적 관련성, 단서 단어 점수, 개체 표현의 개체명 타입 유사도, 개체 이름 매칭 점수, 개체인기도 점수 자질들을 기반으로 SVM(support vector machine)을 학습하여, NIL 개체를 인식하는 문제와 개체 연결 중의성을 해소하는 방법을 제안한다. 구축한 지식 베이스를 기반으로 제안한 두 방법을 순차적으로 적용하였을 때 좋은 개체 링킹 성능을 얻었다. 개체 링킹 시스템의 성능은 NIL 개체 인식 성능이 83.66%, 중의성 해소 성능이 90.81%의 F1 점수를 보였다.