디지털 라이브러리[ 검색결과 ]
지능형 영상 감시 시스템에서 모바일 센서 융합을 이용한 폭력행위 인식
http://doi.org/10.5626/JOK.2018.45.6.533
본 논문에서는 지능형 CCTV에서 동시다발적이고 연속적인 행위들로부터 추출한 특성들을 반영하여 폭력행위를 인식하는 방법으로서 그룹 ROI(Region of Interest)를 검출하고 ROI에서의 Dense Optical Flow 알고리즘을 사용해 얻은 움직임 정보와 영상 내 행위자가 소지한 모바일 기기의 관성측정장치로부터 얻은 가속도와 각속도 정보를 융합한 폭력행위 인식모델을 제안한다. 그리고 제안한 모델의 연산시간 감소를 통한 실시간성 확보와 영상만을 사용했을 때의 가려짐에 따른 성능 저하 현상의 성능 개선여부를 평가하기 위한 실험들을 진행하였으며 실행시간 측면에서 약 5.26배 빠른 연산속도를 보였고 정확도 측면에서 11.4% 증진된 결과를 보였다. 이를 통해 제안 모델이 폭력행위 인식에 발생하는 과도한 연산에 따른 실시간성 문제를 보완할 수 있고 영상 내 행위자 사이의 가려짐에 따른 비전 인식 불능에 대한 문제점을 보완할 수 있음을 알 수 있다.
온라인 커뮤니티 사용자의 행동 패턴을 고려한 동일 사용자의 닉네임 식별 기법
http://doi.org/10.5626/JOK.2018.45.2.165
온라인 커뮤니티란 SNS와 달리 사용자들이 닉네임을 통해 익명으로 관심사와 취미를 공유하는 가상 그룹 서비스이다. 그런데 이런 익명성을 악의적으로 활용하는 사용자들이 존재하고, 닉네임의 변경으로 인해 동일 사용자의 데이터가 서로 다른 닉네임에 존재하는 데이터 파편화 문제가 발생할 수 있다. 또한 온라인 커뮤니티에서는 닉네임을 변경하는 일이 빈번하므로 동일 사용자를 식별하는데 어려움을 겪는다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 온라인 커뮤니티 특성을 고려한 사용자의 행동패턴 특징 벡터를 제시하며, 관계 패턴이라는 새로운 암시적 행동 패턴을 제안함과 동시에 랜덤 포레스트 분류기를 이용한 동일 사용자의 닉네임을 식별하는 기법을 제안한다. 또한 실제 온라인 커뮤니티 데이터를 수집해 제안한 행동패턴과 분류기를 이용해 동일 사용자를 유의미한 수준으로 식별할 수 있음을 실험적으로 보인다.
딥 러닝을 이용한 버그 담당자 자동 배정 연구
http://doi.org/10.5626/JOK.2017.44.11.1156
기존의 버그 담당자 자동 배정 연구들은 대부분 기계학습 알고리즘을 기반으로 예측 시스템을 구축하는 방식이었다. 따라서, 고성능의 기계학습 모델을 적용하는 것이 담당자 자동 배정 시스템 성능의 핵심이 된다고 할 수 있으며 관련 연구에서는 높은 성능을 보이는 SVM, Naive Bayes 등의 기계학습 모델들이 주로 사용되고 있다. 본 논문에서는 기계학습 분야에서 최근 좋은 성능을 보이고 있는 딥 러닝을 버그 담당자 자동 배정에 적용하고 그 성능을 평가한다. 실험 결과, 딥 러닝 기반 Bug Triage 시스템이 활성 개발자 대상 실험에서 48%의 정확도를 달성했으며 이는 기존의 기계학습 대비 최대 69%향상된 결과이다.
단어 유사도를 이용한 뉴스 토픽 추출
http://doi.org/10.5626/JOK.2017.44.11.1138
토픽 추출은 문서 집합으로부터 그 문서 집합을 대표하는 토픽을 자동 추출하는 기술이며 자연어 처리의 중요한 연구 분야이다. 대표적인 토픽 추출 방법으로는 잠재 디리클레 할당과 단어 군집화 기반 토픽 추출방법이 있다. 그러나 이러한 방법의 문제점으로는 토픽 중복 문제와 토픽 혼재 문제가 있다. 토픽 중복 문제는 특정 토픽이 여러 개의 토픽으로 추출되는 문제이며, 토픽 혼재 문제는 추출된 하나의 토픽 내에 여러 토픽이 혼재되어 있는 문제이다. 이러한 문제를 해결하기 위하여 본 연구에서는 토픽중복 문제에 대해 강건한 잠재 디리클레 할당으로 토픽을 추출하고 단어 간 유사도를 이용하여 토픽 분리 및 토픽 병합의 단계를 거쳐 최종적으로 토픽을 보정하는 방법을 제안한다. 실험 결과 제안 방법이 잠재 디리클레 할당 방법에 비해 좋은 성능을 보였다.
LTRE: Lightweight Traffic Redundancy Elimination in Software-Defined Wireless Mesh Networks
Gwangwoo Park, Wontae Kim, Joonwoo Kim, Sangheon Pack
http://doi.org/10.5626/JOK.2017.44.9.976
낮은 비용으로 무선 네트워킹 인프라를 구축할 수 있는 무선 메쉬 네트워크에서는 제한된 무선 자원을 효율적으로 이용하기 위해 패킷 전송(특히, 불필요하게 중복되는 패킷 전송)을 신중하게 처리해야 한다. 본 논문에서는 컨트롤러를 통한 중앙 집중식의 관리가 가능한 소프트웨어 정의 네트워킹 기반의 무선 메쉬 네트워크에서 불필요하게 중복 전송되는 데이터의 양을 감소시키기 위해 경량화된 중복 제거기법을 제안한다. 제안하는 중복 제거 기법은 감소되는 트래픽 양을 극대화하기 위해 컨트롤러가 1) 기계학습 기반의 정보 요청, 2) ID기반의 소스 라우팅, 3) 인기도 기반의 캐쉬 업데이트를 통해 중복 제거 효과를 극대화시킬 수 있는 최적의 경로를 결정한다. 시뮬레이션 결과는 제안하는 기법을 통해 전체 트래픽 부하를 18.34%-48.89% 만큼 감소시킬 수 있음을 보여준다.
인기 검색어의 순위 변화 예측
http://doi.org/10.5626/JOK.2017.44.8.782
인기 검색어 리스트는 현재 가장 인기 있는 검색어의 순위를 보여주는 서비스로서 네이버와 같은 포털사이트가 제공한다. 이 리스트에서의 순위 변화는 특정 검색어에 대한 사람들의 관심의 변화를 반영한다. 본 논문은 인기 검색어의 순위 변화를 예측하기 위해 시계열 모델링 프레임워크를 제안한다. 제안한 프레임워크는 과거 순위와 기계학습 모델이 적용되었고, 여기서 해결해야 할 두 가지 문제점이 있다. 첫째, 과거 순위 데이터를 분석한 결과, 70% 이상의 검색어가 리스트에서 소멸 후 재출현하는 현상을 보였다. 소멸 후의 순위는 손실 값으로 볼 수 있으며, 이를 해결하기 위해서 다양한 처리 방법을 적용하였다. 둘째, 과거 순위 데이터는 시계열 데이터이므로 최적 윈도우 크기를 계산하는 것이 중요하다. 본 논문에서는 최적 윈도우 크기는 동일한 검색어들이 서로 다른 두 시점에서 내용상 의미가 달라지는 최단 소멸기간으로 볼 수 있음을 밝혔다. 성능 평가를 위해서 4가지의 기계학습 기법과 2년 동안 수집한 네이버, 다음, 네이트의 인기 검색어 리스트 데이터를 사용하였다.
정보검색기반 결함위치식별 기술의 성능 향상을 위한 버그리포트 품질 예측
http://doi.org/10.5626/JOK.2017.44.8.832
버그리포트는 소프트웨어의 유지보수 단계에서 발생한 결함 정보를 담고 있는 문서로서 개발자가 해당 결함을 수정하기 위해 필수적인 정보이다. 이 때 개발자가 버그리포트를 해결하기 위해 결함을 추적하는 시간을 단축시키기 위한 정보검색기반 결함위치식별 기술들이 제안되었다. 그러나 정보검색에 유용하지 못한 내용들로 작성된 낮은 품질의 버그리포트가 등록 될 경우 결함위치식별 성능이 크게 저하된다. 본 논문에서는 낮은 품질의 버그리포트를 선별하기 위한 품질 예측 방법을 제안한다. 이 과정에서 버그리포트의 쿼리로써의 품질 요소를 정의하고, 기계학습을 사용하여 품질을 예측한다. 제안 방법을 오픈소스 프로젝트에 적용하여 기존 품질 예측 기술 대비 평균 6.62% 더 정확하게 예측하였다. 또한 기존 결함위치식별 기술에 제안 예측 기술과 자동 쿼리 재구성 기술을 함께 적용한 경우 결함위치식별 정확도를 1.3% 향상시켜, 제안 품질 예측 기술이 정보검색기반 결함위치식별 기술의 성능 향상을 도울 수 있음을 확인하였다.
말뭉치 자원 희소성에 따른 통계적 수지 신호 번역 문제의 해결
통계적 기계 번역을 이용한 구어-수화 번역 연구가 활발해짐에도 불구하고 수화 말뭉치의 자원 희소성 문제는 해결되지 않고 있다. 본 연구는 수화 번역의 첫 번째 단계로써 통계적 기계 번역을 이용한 구어-수지 신호 번역에서 말뭉치 자원 희소성으로부터 기인하는 문제점들을 해결할 수 있는 세 가지 전처리 방법을 제안한다. 본 연구에서 제안하는 방법은 1) 구어 문장의 패러프레이징을 통한 말뭉치 확장방법, 2) 구어 단어의 표제어화를 통한 개별 어휘 출현 빈도 증가 및 구어 표현의 번역 가능성을 향상시키는 방법, 그리고 3) 수지 표현으로 전사되지 않는 구어의 기능어 제거를 통한 구어-수지 표현 간 문장 성분을 일치시키는 방법이다. 서로 다른 특징을 지닌 영어-미국 수화 병렬 말뭉치들을 이용한 실험에서 각 방법론들이 단독으로 쓰일 때와 조합되어 함께 사용되었을 때 모두 말뭉치의 종류와 관계없이 번역 성능을 개선시킬 수 있다는 것을 확인할 수 있었다.
동적 메모리 네트워크의 시간 표현과 데이터 확장을 통한 질의응답 최적화
질의응답 문제를 인공지능 모델을 통해 해결하는 연구는 메모리 네트워크의 등장으로 인해 방법론의 변화를 맞이하고 있으며, 그 중 동적 메모리 네트워크(DMN)는 인간 기억 체계에 착안하여 신경망 기반의 주의 기제를 적용하면서, 질의응답에서 일어나는 각 인지 과정들을 모듈화 했다는 특징들을 갖는다. 본 연구에서는 부족한 학습 데이터를 확장 시키고, DMN이 내포하고 있는 시간 인식의 한계를 개선해 정답률을 높이고자 한다. 실험 결과, 개선된 DMN은 1K-bAbI 문제의 테스트 데이터에서 89.21%의 정답률과, 95%를 질의응답 통과의 기준의 정답률으로 가정할 때 12개의 과제를 통과하는 성능을 보여 정확도 면에서 기존의 DMN에 비해 13.5%p 만큼 더 높고, 4개의 과제를 추가로 통과하는 성능 향상을 보여주었다. 또한 뒤이은 실험을 통해, 데이터 내에서 비슷한 의미 구조를 가지는 단어들은 벡터 공간상에서 강한 군집을 이룬다는 점과, 일화 기억 모듈 통과 횟수와 근거 사실 수의 성능에 큰 영향을 미치는 직접적인 연관성을 발견하였다.
결정트리 기반의 기계학습을 이용한 동적 데이터에 대한 재익명화기법
사물인터넷, 클라우드 컴퓨팅, 빅데이터 등 새로운 기술의 도입으로 처리하는 데이터의 종류와 양이 증가하면서, 개인의 민감한 정보가 유출되는 것에 대한 보안이슈가 더욱 중요시되고 있다. 민감정보를 보호하기 위한 방법으로 데이터에 포함된 개인정보를 공개 또는 배포하기 전에 일부를 삭제하거나 알아볼 수 없는 형태로 변환하는 익명화기법을 사용한다. 그러나 준식별자의 일반화 수준을 계층화하여 익명화를 수행하는 기존의 방법은 데이터 테이블의 레코드가 추가 또는 삭제되어 k-익명성을 만족하지 못하는 경우에 더 높은 일반화 수준을 필요로 한다. 이와 같은 과정으로 인한 정보의 손실이 불가피하며 이는 데이터의 유용성을 저해하는 요소이다. 따라서 본 논문에서는 결정트리 기반의 기계학습을 적용하여 기존의 익명화방법의 정보손실을 최소화하여 데이터의 유용성을 향상시키는 익명화기법을 제안한다.