검색 : [ keyword: SVM ] (3)

레이더 상 불특정 선박의 자동식별 알고리즘

정현철, 윤성웅, 이상훈

http://doi.org/

해상 안전을 위한 선박의 탐색 및 식별은 매우 중요하다. 선박의 탐색은 레이더로 가능하나, 식별은 선박자동식별장치, 통신장비, 시각 등에 의해 이루어지며, 이러한 식별수단이 불능 시 레이더 운용자의 경험과 지식을 바탕으로 선박의 기동특성을 참고하여 식별하는 매우 어려운 경우가 발생한다. 본 논문에서는 지속적인 관찰임무를 수행해야 할 선박 탐색요원의 임무를 보조하기 위하여 레이더 상 선박의 기동특성을 이용, 자동식별 및 사고발생 가능성을 탐지하는 방법을 제안한다. 4가지 유형의 선박 정보, 레이더 상 접촉거리 및 침로, 속력을 이용하여 그 특징을 추출하고, SVM을 활용하여 식별 정확도를 평가하였으며, 이를 이용한 자동식별 알고리즘을 통해 사고발생 가능성이 있는 선박을 선별하는 방법을 제시하였다. 실험 결과 90% 이상의 식별 정확도를 보였으며, 실제 사고선박인 세월호의 정보를 자동식별 알고리즘에 적용하여 선별 가능함을 보였다. 이 방법은 다양한 상황에서 선박 탐색요원의 경험과 지식을 효과적으로 보완하고, 다수의 선박 중 관심필요선박을 사전 식별하여 정보를 제공함으로서 탐색요원의 노력을 경감시키고, 문제점을 보다 빨리 인지하는데 도움이 될 것이다.

긍정 데이터 분포를 반영한 다중 인스턴스 지지 벡터 기계 학습

황중원, 박성배, 이상조

http://doi.org/

본 논문에서는 데이터 분포를 고려한 다중 인스턴스 지지 벡터 기계 학습 알고리즘을 제안한다. 기존의 방법은 긍정 가방 안에서 “가장 긍정”인 인스턴스만 고려하여 마진을 찾는다. 일반적으로 다중인스턴스로 표현된 데이터에서, 긍정 가방에 포함된 인스턴스들 중 실제로 긍정을 나타내는 인스턴스들은 자질 공간 상에서 서로 유사한 곳에 위치해 있다. 제안한 방법은 기존의 다중 인스턴스 지지 벡터 기계학습 알고리즘 중에서 긍정 인스턴스들의 교차점을 찾아 이 교차점과 거리를 계산하여 “가장 긍정”인 인스턴스를 선택한다. 긍정 인스턴스들의 교차점인 피벗 포인트를 구하는 방식은 두 가지이다. 먼저, 학습과정 중 추정된 긍정 인스턴스들의 중심점을 사용하는 방법과 학습 시작 시에 가장 긍정일 것으로 예상되는 긍정 인스턴스들의 중심점을 찾는 방법으로 나뉜다. 총 12개의 벤치마크 다중 인스턴스 데이터 셋을 통해 제안한 방법이 기존의 학습 알고리즘에 비해 더 좋은 성능을 보임을 보인다.

Structural SVM 기반의 한국어 의미역 결정

이창기, 임수종, 김현기

http://doi.org/

의미역 결정은 자연어 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 문제이다. 일반적으로 의미역 결정을 위해서는 서술어 인식(Predicate Identification, PI), 서술어 분류(Predicate Classification, PC), 논항 인식(Argument Identification, AI) 논항 분류(Argument Classification, AC) 단계가 수행된다. 본 논문에서는 한국어 의미역 결정 문제를 위해 Korean Propbank를 의미역 결정 학습 말뭉치로 사용하고, 의미역 결정 문제를 Sequence Labeling 문제로 바꾸어 이 문제에서 좋은 성능을 보이는 Structural SVM을 이용하였다. 실험결과 서술어 인식/분류(Predicate Identification and Classification, PIC)에서는 97.13%(F1)의 성능을 보였고, 논항 인식/분류(Argument Identification and Classification, AIC)에서는 76.96%(F1)의 성능을 보였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr