Digital Library[ Search Result ]
Time-Series Data Augmentation Based on Adversarial Training
http://doi.org/10.5626/JOK.2023.50.8.671
Recently, time series data are being generated in various industries with advancement of the Internet of Things (IoT). Accordingly, demands for time series forecasting in various industries are increasing. With acquisition of a large amount of time-series data, studies on traditional statistical method based time-series forecasting and deep learning-based forecasting methods have become active and the need for data augmentation techniques has emerged. In this paper, we proposed a novel data augmentation method for time series forecasting based on adversarial training. Unlike conventional adversarial training, the proposed method could fix the hyperparameter about the number of adversarial training iterations and utilize blockwise clipping of perturbations. We carried out various experiments to verify the performance of the proposed method. As a result, we were able to confirm that the proposed method had consistent performance improvement effect on various datasets. In addition, unlike conventional adversarial training, the necessity of blockwise clipping and the hyperparameter value fixing proposed in this paper were also verified through comparative experiments.
A Time-Course Multi-Clustering Method for Single-Cell Trajectory Inference
http://doi.org/10.5626/JOK.2022.49.10.838
From time-series single-cell transcriptome data, gene expression information can be generated to observe the timing of significant cell differentiation changes while accounting for important biological phenomena in relation to experimental conditions. Due to recent surge of time-series single-cell transcriptome data, studies on various dynamic variation in cells such as cell cycle and cell differentiation have been actively conducted. Particularly, time series analysis at single-cell level for cell differentiation is advantageous for biological interpretation compared to a single time point as it is possible to observe changes in the time axis. In this paper, we proposed a multi-clustering method to infer cell trajectory by considering time information at the genetic-level of time-series single-cell transcriptome data. Analyses of gene expression data on the development of human neuron cell differentiation using this method showed similar results to biological results uncovered in a previous study.
Time-series Location Data Collection and Analysis Under Local Differential Privacy
Kijung Jung, Hyukki Lee, Yon Dohn Chung
http://doi.org/10.5626/JOK.2022.49.4.305
As the prevalence of smart devices that can generate location data, the number of location-based services is exploding. Since the user’s location data are sensitive information, if the original data are utilized in their original form, the privacy of individuals could be breached. In this study, we proposed a time-series location data collection and analysis method that satisfies local differential privacy, which is a strong privacy model for the data collection environment and considers the characteristics of time-series location data. In the data collection process, the location of an individual is expressed as a bit array. After that, each bit of the array is perturbed by randomized responses for privacy preservation. In the data analysis process, we analyzed the location frequency using hidden Markov model. Moreover, we performed additional spatiotemporal correlation analysis, which is not possible in the existing analysis methods. To demonstrate the performance of the proposed method, we generated trajectory data based on the Seoul subway and analyzed the results of our method.
ESS Operation Scheduling Scheme Using LSTM for Peak Demand Reduction
Yeongung Seo, Seungyoung Park, Myungjin Kim, Sungbin Lim
http://doi.org/10.5626/JOK.2019.46.11.1165
In recent years, blackouts have become more likely in South Korea as the peak demand has sharply increased. In order to address this issue, an energy storage system (ESS) operation scheduling technique has been investigated for its ability to reduce the peak demand by utilizing the power stored in the ESS. If the power demand information is known in advance, an optimal ESS operation scheduling technique can be applied in consideration of both the power stored in the ESS and the power demand to be generated in the future. However, it is difficult to predict the peak demand in advance because it only occurs in a relatively short time period, and the instance of its occurrence differs substantially from day-to-day. Therefore, it is very difficult to implement an optimal ESS operation scheduling technique that requires exact information on power demands in advance. Thus, in this paper, we proposed an ESS operation scheduling method with which to reduce the peak demand by using only historical power demands. Specifically, we employed a long short-term memory (LSTM) network and trained it using the historical power demands and their corresponding optimal ESS discharge powers. Then, we applied the trained network to approximate the optimal ESS operation scheduling. We showed the validity of the proposed method through computer simulations using historical power demand data from four customers. In particular, it was shown that the proposed scheme reduced the peak demand per year by up to about 82.42% compared to the optimal scheme that is only feasible when the exact future power demands are available.
Partial Denoising Boundary Image Matching Based on Time-Series Data
Bum-Soo Kim, Sanghoon Lee, Yang-Sae Moon
Removing noise, called denoising, is an essential factor for the more intuitive and more accurate results in boundary image matching. This paper deals with a partial denoising problem that tries to allow a limited amount of partial noise embedded in boundary images. To solve this problem, we first define partial denoising time-series which can be generated from an original image time-series by removing a variety of partial noises and propose an efficient mechanism that quickly obtains those partial denoising time-series in the time-series domain rather than the image domain. We next present the partial denoising distance, which is the minimum distance from a query time-series to all possible partial denoising time-series generated from a data time-series, and we use this partial denoising distance as a similarity measure in boundary image matching. Using the partial denoising distance, however, incurs a severe computational overhead since there are a large number of partial denoising time-series to be considered. To solve this problem, we derive a tight lower bound for the partial denoising distance and formally prove its correctness. We also propose range and k-NN search algorithms exploiting the partial denoising distance in boundary image matching. Through extensive experiments, we finally show that our lower bound-based approach improves search performance by up to an order of magnitude in partial denoising-based boundary image matching.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr