디지털 라이브러리[ 검색결과 ]
관심 영역 기반 이미지 자리 표시자 생성
http://doi.org/10.5626/JOK.2019.46.1.39
이미지 자리 표시자는 웹상에서 고용량의 이미지나 대량의 이미지를 로딩 하는 경우 빠르고 효과적인 로딩을 위해 원본 이미지 대신 사용하는 저용량의 이미지를 의미한다. 저용량 고품질의 이미지 자리 표시자 생성을 위해 다양한 SVG(Scalar Vector Graphics) 기반 이미지 자리 표시자 생성법이 제안되었지만, 고품질의 세부 묘사를 위해서는 용량의 증가가 필수적으로 수반된다. 본 논문에서는 관심 영역추출을 통해 기하 요소의 배치를 최적화한 SVG 기반 이미지 자리 표시자 생성 방법을 제안한다. 본 논문에서 제안한 관심 영역 기반 이미지 자리표시자는 적은 용량을 가지면서도 동일한 시각적 효과를 나타내기 때문에 차후 웹기반 서비스 분야에서의 높은 활용가치가 기대된다.
맥락 정보를 이용한 시각 장면 이해
http://doi.org/10.5626/JOK.2018.45.12.1279
본 논문에서는, 시각 장면 이해의 한 문제로서, 입력 영상들로부터 장면 그래프와 영상 캡션을 동시에 생성하는 문제를 다룬다. 장면 그래프는 영상 내 물체들과 그들 간의 관계들을 나타내는 정형 지식 표현이며, 영상 캡션은 주어진 영상에 담긴 장면을 서술하는 자연어 문장이다. 본 논문에서는 이러한 문제를 효과적으로 해결하기 위해, 맥락 정보를 서로 교환함으로써 서로 다른 두 가지 표현을 상호보완적으로 생성하는 새로운 심층 신경망 모델을 제안한다. 제안 모델은 물체 탐지, 관계 탐지, 캡션 생성 등 각기 다른 세 가지 계층들로 구성되며, 각 계층은 그 계층에 부여된 작업을 성공적으로 수행하기 위해 맥락정보를 적절히 활용한다. 제안 모델의 성능을 평가하기 위해, 대규모 벤치마크 데이터 집합인 Visual Genome을 이용한 다양한 실험들을 수행하였다. 이러한 실험들을 통해, 맥락 정보를 활용하는 제안 모델이 기존의 경쟁 모델들에 비해 높은 성능 향상이 있었음을 확인할 수 있었다.
스마트폰 어플리케이션 설치 목록을 이용한 사용자 특성 추론
http://doi.org/10.5626/JOK.2018.45.12.1240
스마트폰의 사용이 보편화됨에 따라 개인화 서비스에 대한 요구가 증가하고 있다. 이에 따라 개인화 서비스를 제공할 때 유용하게 활용될 수 있는 사용자 특성을, 데이터 기반으로 통계 학습을 이용해 추론하는 연구가 활발히 진행되고 있다. 본 연구에서는 사용자의 관심사와 생활습관을 반영하고 있을 뿐만 아니라, 적은 비용으로 수집할 수 있는 어플리케이션 설치 목록으로부터 요인 벡터를 추출하여 사용자 특성을 추론한다. 추론 과정에서는 설치 목록과 더불어 어플리케이션 스토어에서 획득 가능한 메타정보인 카테고리와 설명글을 이용하여 사용자를 표현하는 네 가지 요인 벡터를 만들어 사용한다. 특히, 인공 신경망 기반의 텍스트 임베딩 기법인 Doc2Vec을 설명글에 적용한 요인 벡터를 사용한다. 또한, 요인 벡터 추출에 이용되는 어플리케이션을 선별하는 기준을 제시하여 추론 성능을 높이고자 하였다. 국내 스마트폰 사용자 100명으로부터 데이터를 수집하여 성별, 연령, 연애 상태, 거주형태, 동거 여부, 수입 수준, 지출 수준, 신장, 체중, 종교, 이수 학기, 단과대학을 추론하는 실험을 수행했으며, 제안 기법의 우수성을 확인하였다.
부분 임베딩 기반의 지식 완성 기법
http://doi.org/10.5626/JOK.2018.45.11.1168
지식 그래프는 실세계의 개체들과 개체 사이의 관계로 구성된 네트워크를 의미하며, 최근에는 대용량 데이터를 기반으로 구축되고 있다. 대부분의 지식 그래프들은 누락된 엔티티 또는 관계들로 인해 불완전성에 대한 문제점이 존재한다. 이를 해결하기 위해 지난 연구들은 지식 그래프를 다차원 공간상에 임베딩하는 방법을 적용했다. 그러나 이러한 연구들은 지식 그래프가 변화하지 않는다는 가정을 하고 있다. 이로 인해 새로운 트리플이 추가되어 빠르게 진화하는 실세계의 지식 그래프에 적용하기 위해 반복적인 임베딩 모델의 재학습은 고비용의 연산이 요구되며, 실용적이지 못하다. 따라서 본 논문에서는 변화하는 지식 그래프를 대상으로 하는 부분 임베딩 기반의 지식 완성 방법을 제안한다. 지식 완성의 대상이 되는 관심 관계들을 추출하기 위해 온톨로지의 공리와 문맥 정보를 활용했으며, 이를 기반으로 엔티티와 관계들을 임베딩하고 학습하여 지식 완성을 수행했다. 제안하는 방법의 성능을 측정하기 위해 Freebase와 WiseKB 데이터셋을 대상으로 최신 지식 완성 연구들과의 비교 실험을 진행하였고, 평균적으로 학습시간이 약 49%∼90% 감소했으며, 전체적인 성능이 약 6.7% 증가하는 것을 확인했다.
복부 CT 영상에서 다중 아틀라스 기반 형상 및 밝기값 정보를 사용한 신실질 자동 분할
http://doi.org/10.5626/JOK.2018.45.9.937
부분신장절제술 후 절제술을 수행한 반대쪽 신장의 보상성 비대를 예측하기 위해 신실질을 분할하는 것이 필요하다. 본 논문에서는 복부 CT 영상에서 다중 아틀라스 기반 형상 및 밝기값 정보를 사용한 신실질 자동 분할 방법을 제안한다. 첫째, 볼륨 기반 유사 정합 및 밝기값 기반 유사도 측정을 통해 유사 아틀라스를 선정한다. 둘째, 볼륨 기반 유사 정합 및 아틀라스 기반 어파인 정합의 단계적 정합 및 밝기값 기반 제한된 지역적 가중투표를 통해 신실질을 분할한다. 셋째, 밝기값의 분포가 훈련 영상과 달라 분할이 제대로 되지 않는 데이터에 대해 가우시안 혼합 모델 기반 다중 임계치 기법을 통한 피질 분할 및 형상확률맵을 이용한 수질 분할 방법을 선택적으로 수행한다. 제안방법을 통한 분할 결과와 수동 분할 결과 간 다이스 유사계수는 91.34%로, 다중 투표 기법을 통한 분할 및 지역적 가중투표를 통한 분할 방법대비 다이스 유사계수가 각각 18.19%, 1.35% 향상되었다.
그래프 기반 준지도 학습에서 빠른 낮은 계수 표현 기반 그래프 구축
http://doi.org/10.5626/JOK.2018.45.1.15
낮은 계수 표현(Low-Rank Representation, LRR) 기반 방법은 얼굴 클러스터링, 객체 검출 등의 여러 실제 응용에 널리 사용되고 있다. 이 방법은 그래프 기반 준지도 학습에서 그래프 구축에 사용할 경우 높은 예측 정확도를 확보할 수 있어 많이 사용된다. 그러나 LRR 문제를 해결하기 위해서는 알고리즘의 매 반복마다 데이터 수 크기의 정방행렬에 대해 특이값 분해를 수행하여야 하므로 계산 비효율적이다. 이를 해결하기 위해 속도를 향상시킨 발전된 LRR 방법을 제안한다. 이는 최근 발표된 Fast LRR(FaLRR)을 기반으로 하며, FaLRR이 속도는 빠르지만 실제로 분류 문제에서 성능이 낮은 것을 해결하기 위해 기반 최적화 목표에 추가 제약 조건을 도입하고 이를 최적화하는 방법을 제안한다. 실험을 통하여 제안 방법은 LRR보다 더 좋은 해를 빠르게 찾아냄을 확인할 수 있다. 또한, 동일한 해를 도출하는 방법을 찾아내기는 어렵지만 최소화하는 목표가 추가될 경우 더 좋은 결과를 나타내는 Fast MLRR(FaMLRR)을 제안한다.
추상 도달가능성 그래프 기반 소프트웨어 모델체킹에서의 탐색전략 고려방법
http://doi.org/10.5626/JOK.2017.44.10.1034
본 연구에서는 추상 도달가능성 그래프(ARG) 기반의 소프트웨어 모델체킹에서 그래프 탐색전략을 설정할 수 있는 새로운 방법을 제시한다. ARG의 여러 실행 경로를 하나로 묶어 모델체킹 성능을 향상시키는 기법인 블록 인코딩(Block Encoding) 기법을 활용하는 경우 기존의 기법들은 인코딩 전의 ARG에서 인코딩을 효과적으로 수행할 수 있는 탐색전략만을 고려하였을 뿐 실제 모델체킹의 성능을 좌우할 수 있는 인코딩 후의 ARG에 대한 탐색전략을 고려하지 못하는 문제가 있었다. 본 연구에서는 기존 연구에서 제시된 탐색 기법을 사용하여 블록 인코딩을 효과적으로 수행하는 동시에 인코딩된 후의 ARG에 대한 탐색 순서를 고려할 수 있는 이중 탐색전략 기법을 제시한다. 또한 탐색 순서의 변화가 모델체킹의 성능에 미치는 영향을 확인하기 위하여 제시하는 기법을 오픈소스 모델체킹 도구에 구현하고 벤치마크 실험을 수행하였으며 탐색전략이 달라지면 모델체킹의 성능이 달라지는 현상을 확인하였다.
관계기반 요약그래프에서 효율적인 최단경로 탐색기법
http://doi.org/10.5626/JOK.2017.44.7.710
그래프 데이터가 대용량화됨에 따라 데이터를 저장 및 유지하기 위한 비용이 지속적으로 증가하고 있다. 이와 같은 대용량 그래프에서 최단경로를 탐색하는 것은 빈번한 디스크 I/O와 그래프의 높은 복잡도로 인해 매우 오랜 수행시간을 요구한다. 최근 그래프의 밀집도가 높은 부분그래프를 하나의 슈퍼노드로 표현하여 그래프 크기와 디스크 I/O를 줄이는 그래프 요약 연구가 수행되고 있다. 이와 같은 요약된 그래프에서 효율적으로 최단경로를 탐색하기 위해서는 요약그래프의 복원을 최소화해야 한다. 본 논문에서는 요약그래프의 복원 성능을 분석하고, 이를 이용하여 오차를 최소화하며 빠르게 최단경로를 탐색하는 근사 기법을 제안한다. 또한 최단경로 탐색과정 중 복원이 요구되는 슈퍼노드가 포함된 경로를 사전에 색인으로 구축하여 정확한 최단경로를 효율적으로 탐색하는 기법을 제안한다. 실세계 데이터를 이용한 실험을 통하여 제안하는 요약그래프에서의 최단거리 탐색기법이 원본 그래프를 고려한 기법들보다 최대 70%로 수행시간이 향상되었음을 보인다.
그래프 기반 Wi-Fi 신호 지도 구축 및 갱신 기법
http://doi.org/10.5626/JOK.2017.44.6.643
Wi-Fi 기반 실내 측위 기법 중 핑거프린팅 측위는 높은 정밀도로 가장 보편적인 기술 중 하나이다. 그러나 초기 신호 지도 구축과 이 후 갱신 과정은 수동으로 이루어져 많은 노동력과 시간 비용을 발생시키는 단점이 있다. 본 논문에서는 그래프를 기반으로 각 정점에서 초기 신호 지도를 구축 하는 것을 제안한다. 그리고 사용자로부터 획득한 신호 세기 데이터를 각 간선에 참조 위치를 생성하여 자동으로 매핑하여 신호 지도를 갱신하는 방법을 제안한다. 제안하는 방식은 초기 신호 지도를 그래프의 정점에서만 신호를 수집하여 구축하고 갱신은 자동으로 수행하므로 기존 핑거프린팅 무선 측위 기법의 단점인 노동력과 시간 비용을 크게 감소시킬 수 있다. 실험 결과, 실제 위치에서의 데이터와의 비교를 통해 신호 지도 갱신 기법을 검증할 수 있었고 자동으로 신호 지도를 갱신하는 작업으로 약 3.2m, 3.5m의 정밀도를 갖는 신호 지도를 구축할 수 있었다.
단어 동시출현관계로 구축한 계층적 그래프 모델을 활용한 자동 키워드 추출 방법
키워드 추출은 주어진 문서로부터 문서의 주제나 내용에 관련된 단어들을 추출해내는 방법으로 대량의 문서를 다루는 텍스트마이닝 연구들이 전처리에서 공통적으로 거치는 대표 자질 추출에서 중요하게 활용될 수 있다. 본 논문에서는 하나의 문서의 주제에 적합한 키워드를 추출하기 위해 문서에 출현한 단어들 사이의 동시출현관계, 동시출현 단어 쌍 사이의 출현 종속 관계, 단어들 사이의 공통 부분단어 관계 등의 다양한 관계들을 특징으로 활용하여 구축한 계층적 그래프 모델을 제안하고, 그래프를 구성하는 정점(Vertex)들의 중요도를 평가할 때 입력 간선(Edge)에 의한 영향뿐만 아니라 출력 간선에 의한 영향도 고려한 새로운 중요도 산출 방법을 제안하며, 이를 토대로 점진적으로 키워드를 추출해내는 방안을 제안한다. 그리고 제안한 방법의 정확성과 주제적 포괄성 검증을 위해 다양한 분야의 주제를 가진 문서 데이터에 다양한 평가방법을 적용해 기존의 방법보다 전체적으로 더 나은 성능을 보임을 확인하였다.