검색 : [ keyword: load balancing ] (6)

클라우드 컴퓨팅 환경에서의 자원 효율적 가상머신 배치를 위한 더브테일 사용량 예측 모델

강형빈, 유현진, 김정빈, 정희석, 신재혁, 노서영

http://doi.org/10.5626/JOK.2023.50.12.1041

기존의 IT 서비스들이 클라우드로 이주함에 따라, 클라우드 컴퓨팅 환경에서의 자원 효율적 운영은 중요한 문제로 대두되고 있다. 이에 데이터 센터의 추가적인 설비 없이 자원의 효율을 증가시킬 수 있는 가상머신 배치(Virtual Machine Placement)에 관한 연구가 진행되어왔다. 본 논문에서는 가상머신을 배치하기 적합한 호스트(Host)를 선정하여 배치하는 방법으로 사용량 예측 모델을 사용할 것을 제안한다. 기존의 사용량 예측 모델의 단점을 개선한 더브테일 사용량 예측 모델은 호스트에 실행되는 가상머신의 CPU, 디스크, 메모리 사용량 등의 지표들을 측정하고, 시계열 데이터로 변환해 딥러닝 모델을 사용해 특징을 추출한다. 이를 가상머신 배치에 활용함으로써 호스트의 자원을 효율적으로 사용하고, 가상머신을 적절하게 로드 밸런싱 할 수 있다.

실시간 공간 빅데이터 스트림 분산 처리를 위한 부하 균형화 방법

윤수식, 이재길

http://doi.org/10.5626/JOK.2017.44.11.1209

최근 스마트 자동차, 스마트폰과 같은 다양한 소스로부터 공간 빅데이터 스트림을 수집하는 것이 매우 용이해졌다. 공간 데이터 스트림은 편중되고 동적으로 변화하는 분포를 지니기 때문에 전체 부하가 분산 클러스터 내의 작업자들에게 효율적으로 분배되지 않을 경우 전체 시스템의 성능이 저하된다. 본 연구에서는 공간 데이터 스트림에 특화된 부하 균형화 알고리즘인 적응적 공간 키 그룹핑(ASKG)을 제안한다. ASKG의 핵심 아이디어는 공간 데이터 스트림의 최근 분포를 학습하고 이를 기반으로 향후 유입되는 데이터 스트림이 각 작업자에게 고르게 분배되도록 하는 새로운 그룹핑 스키마를 제안하는 것이다. 이를 공간 분포의 변화에 맞춰 주기적으로 반복함으로서 적응적으로 부하 불균형을 해결할 수 있다. 실제 데이터셋에 대해 작업자의 수, 입력 속도, 공간 질의 처리 시간을 변화시키며 성능을 평가한 결과, 대안 알고리즘 대비 제안 방법이 부하 불균형, 처리량, 지연 시간에서 높은 개선효과를 보였다.

IoT환경에서의 부하 균형을 이룬 네트워크 토폴로지 탐색

박현수, 김진수, 박무성, 전영배, 윤지원

http://doi.org/10.5626/JOK.2017.44.10.1071

오늘날 복잡한 네트워크 망을 가지게 됨에 따라 네트워크 기기들의 자산식별은 관리 및 보안관점에서 중요한 사항으로 대두되고 있다. 이러한 자산들은 네트워크 망에 연결되어 있기 때문에 네트워크망 구조를 알아내고, 각 자산의 위치 및 연결 상태를 확인하는 것 또한 중요하다. 이는 네트워크 구조상의 취약점들을 밝혀내는데 사용되어지고, 이를 통하여 취약점을 보완할 수 있다. 하지만 적은 리소스를 가지는 사물인터넷의 네트워크 망에서는 네트워크 구조를 알아내기 위하여 모니터들이 보내는 Traceroute 패킷이 사물인터넷 기기들에게 과부하를 줄 수 있다. 이를 위하여 본 논문에서는 기존에 사용 되던 더블 트리 알고리즘을 효과적으로 발전시킴으로써 사물인터넷이 이루는 네트워크 망의 부하를 줄인다. 이러한 부하 균형을 이루기 위하여 이 논문에서는 새로운 목적지 매칭 알고리즘을 제시하고, 통계학적으로 현재 탐색하고 있는 경로와 가장 겹치지 않은 경로로 탐색을 시도한다. 이를 통해서 네트워크의 부하 균형을 이루고, 부가적으로 모니터의 리소스 사용을 균등하게 한다.

전술 백본망에서 우선순위를 고려한 다중 경로 라우팅 방안

김용신, 신상헌, 김영한

http://doi.org/

전술망은 감시정찰, 정밀타격, 지휘통제체계를 하나로 묶어주는 무선네트워크 기반 체계이다. 전술망은 생존성을 높이기 위해 격자형으로 연결되어 있으므로 대체 링크를 다수 보유하고 있다. 그리고, 부대와 전투원들이 작전 수행시 망 접속 위치가 변경되므로 망 토폴로지가 자주 변경된다. 라우팅을 위한 대부분의 인터넷 표준들은 안정적인 백본망을 목표로 설계되었으므로 전술망에 적용시 성능 저하가 발생할 수 있다. 본 논문에서는 전술 백본망을 위해 우선 순위를 고려한 다중 경로 지역 최적화 기법을 제안하였다. 제안된 기법은 라우팅 메트릭을 전역 메트릭과 지역 메트릭으로 구분하여 관리한다. 전역 메트릭은 라우팅 프로토콜을 통해 다른 라우터들에게 전파되며 루프 방지가 보장되는 다중 경로 구성에 사용되고, 지역 메트릭은 링크 사용율을 반영하여 링크 과부하 발생시 우회 경로를 탐색하는 용도로 활용되며 각 라우터 내에서만 관리된다. 또한, 우선순위가 높은 트래픽에게 최적 경로에 대한 우선권을 부여한다. 시뮬레이션을 통해 제안된 기법에서 가용 라우터간에 사용자 트래픽이 효과적으로 분산됨을 확인하였다.

전술 백본망에서 부하 분산을 위한 다중 경로 지역 최적화 기법

김용신, 김영한

http://doi.org/

본 논문에서는 전술 백본망에서 부하 분산을 위한 다중 경로 지역 최적화 기법을 제안하였다. 제안된 기법은 라우팅 메트릭을 전역 메트릭과 지역 메트릭으로 구분하여 관리한다. 전역 메트릭은 라우팅 프로토콜을 통해 다른 라우터들에게 전파되며 루프 방지가 보장되는 다중 경로 구성에 사용되고, 지역 메트릭은 링크 사용율을 반영하여 링크 과부하 발생시 우회 경로를 탐색하는 용도로 활용되며 각 라우터 내에서만 관리된다. 모의 실험을 통해 다중 경로 지역 최적화 기법 적용시 사용자 트래픽이 효과적으로 가용 링크들을 통해 분산되는 것을 확인하였다.

대규모 RDF 데이터의 분산 저장을 위한 동적 분할 기법

김천중, 김기연, 윤종현, 임종태, 복경수, 유재수

http://doi.org/

최근 대규모 RDF 데이터를 효과적으로 분산 저장 및 관리하기 위해 RDF 분할 기법의 연구가 진행되고 있다. 본 논문에서는 지속적으로 데이터의 추가 및 변경이 발생하는 동적 환경에서 부하 분산을 지원하는 RDF 동적 분할 기법을 제안한다. 제안하는 기법은 그래프 분할을 수행하기 위한 기준으로 질의에 의해 사용된 RDF 데이터의 사용 빈도에 따라 클러스터와 서브 클러스터 그룹을 생성한다. 생성된 클러스터와 서브 클러스터는 분산된 서버의 부하 및 저장되는 데이터 크기를 고려하여 분할을 수행한다. 이를 통해 지속적인 데이터 변경 및 추가로 인해 특정 서버에 대한 데이터 집중을 해결하고 서버들간에 효율적인 부하 분산을 수행한다. 성능평가를 통하여 분산 서버에서 제안하는 기법이 기존 분할 기법에 비해 질의 수행 시간이 크게 향상됨을 보인다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr