Digital Library[ Search Result ]
Automatic Segmentation of Renal Parenchyma using Shape and Intensity Information based on Multi-atlas in Abdominal CT Images
Hyeonjin Kim, Helen Hong, Kidon Chang, Koon Ho Rha
http://doi.org/10.5626/JOK.2018.45.9.937
Renal parenchyma segmentation is necessary to predict contralateral hypertrophy after renal partial nephrectomy. In this paper, we propose an automatic segmentation method of renal parenchyma using shape and intensity information based on the multi-atlas in abdominal CT images. First, similar atlases are selected using volume-based similarity registration and intensity-similarity measure. Second, renal parenchyma is segmented using two-stage registration and constrained intensity-based locally-weighted voting. Finally, renal parenchyma is refined using a Gaussian mixture model-based multi-thresholds and shape-prediction map in under- and over-segmented data. The average dice similarity coefficient of renal parenchyma was 91.34%, which was 18.19%, 1.35% higher than the segmentation method using majority voting and locally-weighted voting in dice similarity coefficient, respectively.
Automatic Segmentation of Femoral Cartilage in Knee MR Images using Multi-atlas-based Locally-weighted Voting
Hyeun A Kim, Hyeonjin Kim, Han Sang Lee, Helen Hong
In this paper, we propose an automated segmentation method of femoral cartilage in knee MR images using multi-atlas-based locally-weighted voting. The proposed method involves two steps. First, to utilize the shape information to show that the femoral cartilage is attached to a femur, the femur is segmented via volume and object-based locally-weighted voting and narrow-band region growing. Second, the object-based affine transformation of the femur is applied to the registration of femoral cartilage, and the femoral cartilage is segmented via multi-atlas shape-based locally-weighted voting. To evaluate the performance of the proposed method, we compared the segmentation results of majority voting method, intensity-based locally-weighted voting method, and the proposed method with manual segmentation results defined by expert. In our experimental results, the newly proposed method avoids a leakage into the neighboring regions having similar intensity of femoral cartilage, and shows improved segmentation accuracy.
Anterior Cruciate Ligament Segmentation in Knee MRI with Locally-aligned Probabilistic Atlas and Iterative Graph Cuts
Segmentation of the anterior cruciate ligament (ACL) in knee MRI remains a challenging task due to its inhomogeneous signal intensity and low contrast with surrounding soft tissues. In this paper, we propose a multi-atlas-based segmentation of the ACL in knee MRI with locally-aligned probabilistic atlas (PA) in an iterative graph cuts framework. First, a novel PA generation method is proposed with global and local multi-atlas alignment by means of rigid registration. Second, with the generated PA, segmentation of the ACL is performed by maximum-aposteriori (MAP) estimation and then by graph cuts. Third, refinement of ACL segmentation is performed by improving shape prior through mask-based PA generation and iterative graph cuts. Experiments were performed with a Dice similarity coefficients of 75.0%, an average surface distance of 1.7 pixels, and a root mean squared distance of 2.7 pixels, which increased accuracy by 12.8%, 22.7%, and 22.9%, respectively, from the graph cuts with patient-specific shape constraints.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr