검색 : [ author: Hee-Jae Lee ] (3)

방향 회전에 불변한 얼굴 영역 분할과 LBP를 이용한 얼굴 검출

이희재, 김하영, 이다빛, 이상국

http://doi.org/10.5626/JOK.2017.44.7.692

LBP기반 특징점 기술자를 이용한 얼굴검출은 얼굴의 형태정보 및 눈, 코, 입과 같은 얼굴 요소들 간 공간정보를 표현할 수 없는 문제가 있다. 이러한 문제를 해결하기 위해 선행 연구들은 얼굴 영상을 다수개의 사각형 부분영역들로 분할하였다. 하지만, 연구마다 서로 다른 개수와 크기로 부분 영역을 분할하였기 때문에 실험에 사용하는 데이터베이스에 적합한 부분 영역의 분할 기준이 모호하며, 부분 영역의 수에 비례하여 LBP 히스토그램 차원이 증가되고, 부분 영역의 개수가 증가함에 따라 얼굴의 방향 회전에 대한 민감도가 크게 증가한다. 본 논문은 LBP기반 특징점 기술자의 방향 회전 문제와 특징점 차원의 수 문제를 해결할 수 있는 새로운 부분 영역 분할 방법을 제안한다. 실험 결과, 제안하는 방법은 방향 회전된 단일 얼굴 영상에서 99.0278%의 검출 정확도를 보였다.

조명 변화 환경에서 얼굴 인식을 위한 Non-Alpha Weberface 및 히스토그램 평활화 기반 얼굴 표현

김하영, 이희재, 이상국

http://doi.org/

얼굴 외형은 조명의 영향을 크게 받기 때문에 조명 변화는 얼굴 인식 시스템의 성능을 저하시키는 요인 중 하나이다. 본 논문에서는 non-alpha Weberface(non-alpha WF)와 히스토그램 평활화를 결합하여 조명 변화에 강건한 얼굴 표현 방법을 제안한다. 먼저, 입력 얼굴 영상에 대해 명암 대비 조절 파라미터를 적용하지 않은 non-alpha WF를 생성한다. 이후, non-alpha WF의 히스토그램 분포를 전역적으로 균일하게 하고 명암 대비를 향상시키기 위해 히스토그램 평활화를 수행한다. 제안하는 방법을 통해 전처리된 얼굴 영상으로부터 저차원 판별 특징을 추출하기 위해 (2D)²PCA를 적용한다. Extended Yale B 및 CMU PIE 얼굴 데이터베이스에 대해 실험한 결과, 제안하는 방법으로 각각 93.31%와 97.25%의 평균 인식률을 얻었다. 또한, 제안하는 방법은 기존 WF뿐만 아니라 여러 조명 처리 방법들과 비교하여 향상된 인식 성능을 보였다.

EMD와 FFT를 이용한 동작 상상 EEG 분류 기법

이다빛, 이희재, 이상국

http://doi.org/

뇌전도 기반의 뇌-컴퓨터 인터페이스는 향후 손 또는 발과 같은 신체를 대체하거나 사용자의 편의성을 제고하는 등의 다양한 목적으로 여러 산업에서 사용이 될 수 있는 기술이다. 본 논문에서는 경험 모드 분해와 고속푸리에 변환을 통해 동작 상상 뇌전도 신호를 분해하고 특징을 추출하는 방법을 제안한다. 뇌전도 신호 분류 과정은 다음과 같이 3단계로 구성된다. 신호 분해에서는 경험모드분해를 이용하여 뇌전도 신호에 대한 내재모드함수를 생성한다. 특징 추출에서는 파워 스펙트럼 밀도를 이용하여 생성된 내재모드함수의 주파수 대역을 확인한 뒤, 뮤파 대역을 포함하고 있는 내재모드함수에 고속푸리에 변환을 적용하여 움직임 상상에 대한 특징을 추출한다. 특징 분류에서는 서포트 벡터 머신을 사용하여 동작 상상뇌전도 신호에 대한 특징을 분류하고, 10-교차검증을 통해 분류기의 일반화 성능을 추정한다. 제안하는 방법은 다른 방법들과 비교하여 84.50%의 분류 정확도를 보여주었다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr