디지털 라이브러리[ 검색결과 ]
단일 리드 심전도 데이터를 이용한 심혈관 질환 예측
http://doi.org/10.5626/JOK.2024.51.10.928
심혈관 질환을 진단하는 가장 대표적인 방법은 심전도 데이터를 분석하는 것이며, 병원에서 측 정하는 심전도 데이터는 대부분 12개의 리드로 구성되어 있다. 하지만, 웨어러블 헬스케어 기기에서는 일 반적으로 1개의 리드만 측정되며, 심혈관 질환을 진단하는 데에도 한계가 있다. 따라서 본 논문에서는 웨 어러블 헬스케어 기기로 측정 가능한 단일 리드를 사용하여 흔히 발생하는 심혈관 질환인 심방세동, 좌각 차단, 우각차단을 예측하는 연구를 진행하였다. 합성곱 신경망 모델을 기반으로 질환을 예측하였으며 AUC, F1-score를 통해 성능을 측정 및 비교한 결과, 심방세동, 좌각차단, 우각차단의 예측 평균 AUC가 각각 0.966, 0.971, 0.965, F1-score가 각각 0.867, 0.816, 0.848로 우수한 성능을 보이는 것을 확인하였다. 이를 통해 웨어러블 헬스케어 기기에서 획득 가능한 단일 리드만을 활용한 심혈관 질환의 진단 가능성을 확인할 수 있었다.
장단기 시간 패턴 학습을 통한 그래프 신경망 기반의 태양광 발전량 예측 기법
http://doi.org/10.5626/JOK.2024.51.8.690
최근 태양광 에너지의 활용이 크게 보편화되면서, 태양광 에너지의 효율 향상을 위한 태양광 발전량 예측 연구가 활발히 진행되고 있다. 이와 관련하여, 기존의 심층 학습 모델을 넘어 그래프 신경망 기반의 태양광 발전량 예측 모델들이 제시되었다. 이 모델들은 특정 지역의 태양광 발전량이 인접 지역의 기후 조건에 영향을 받는 공간적 상호작용과 태양광 발전량의 시간 패턴을 함께 고려하는 지역 간 상관관 계를 학습함으로써 예측 정확도를 개선한다. 하지만, 기존 모델들은 주로 고정된 형태의 그래프 구조에 의 존하여, 시간적 및 공간적 상호작용을 반영하기 어려운 한계가 있다. 이에, 본 논문은 지역별 태양광 발전 량 데이터의 장기 및 단기적 시간 패턴을 고려하고, 이를 지역 간 상관관계의 학습에 반영하는 그래프 신 경망 기반의 태양광 발전량 예측 기법을 제안한다. 제안 기법은 타 그래프 신경망 기반 예측 모델과 비교 하여 RRSE 기준 최대 7.49%의 성능 개선을 달성하여 그 우수성을 입증하였다.
자기 교사 학습 모델의 특장점 분석과 사진 분류 및 객체 탐지 성능 분석 연구
http://doi.org/10.5626/JOK.2024.51.7.609
최근, 교사 학습 기반의 인공지능 분야가 급속도로 발전하고 있다. 그러나 교사 학습은 정답 값이 지정된 데이터집합에 의존하기 때문에, 정답 값을 확보하기 위한 비용이 커진다. 이러한 문제점을 해 결하기 위해 정답 값없이 사진의 일반적인 특징을 학습할 수 있는 자기 교사 학습(Self-supervised learning)이 연구되고 있다. 본 논문에서는 다양한 자기 교사 학습 모델을 학습 방식과 백본 네트워크 기 준으로 분류하고, 각 모델의 장단점, 성능을 비교 분석하였다. 성능 비교를 위해 사진 분류 작업을 사용하 였다. 또한 전이 학습의 성능을 비교하기 위해 세밀한 예측 과업의 성능 또한 비교 분석하였다. 그 결과, 긍정적 쌍만 사용하는 모델이 노이즈를 최소화하여 부정적인 쌍을 같이 사용하는 모델들보다 높은 성능을 달성하였다. 또한 세밀한 예측의 경우 이미지를 마스킹하여 학습하거나 멀티스테이지 모델 등을 활용하여 지역적인 정보를 추가로 학습하는 방식이 더욱 높은 성능을 달성한 것을 확인하였다.
약물 분자 임베딩을 활용한 만성 B형간염 환자의 약물 치료반응 예측 정확도 향상
http://doi.org/10.5626/JOK.2024.51.7.627
만성 B형 간염 환자는 적절한 시기에 치료를 받지 못하는 경우 간경변증이나 간암과 같은 합병증으로 진행될 위험이 높다. 이에 따라 여러 B형 간염 항바이러스제가 개발되어 있으며, 항바이러스제의 성 분에 따라 환자 별 반응상 차이가 나타날 수 있어 긍정적인 치료반응을 기대할 수 있는 올바른 약제 선택 이 중요하게 여겨진다. 본 연구에는 환자의 혈액 검사 결과, 약물 처방 여부를 나타내는 전자 의무기록과 함께 B형간염 항바이러스제의 성분 정보를 함께 학습하여 만성 B형간염 환자의 1년 후 치료반응 예측 성 능을 향상시키는 것을 목표로 한다. 보다 효과적인 항바이러스제의 분자 표현을 위하여 고정된 분자 임베딩 및 그래프 신경망 모델을 활용한 종단형(end-to-end) 구조를 통해 생성된 분자 임베딩을 사용하였으며, 기반 모델과의 비교를 통해 약물 분자 임베딩이 성능 향상에 도움을 줄 수 있음을 확인하였다.
ETF 가격 방향성 예측을 위한 그래프 구조 학습 기반 신경망
http://doi.org/10.5626/JOK.2024.51.5.473
상장지수펀드(ETF)는 특정 지수를 추종하는 인덱스 펀드로, 개별 종목에 대한 위험도 및 운용 보수가 낮다는 특징을 가지고 있다. ETF 예측을 위해 다양한 방법들이 개발되었으며 최근 인공지능 기반 기술들이 개발되고 있다. 대표적인 방법은 시계열 기반 인공신경망을 활용하여 ETF의 가격 방향성을 예 측하는 것이다. 이는 ETF의 과거 가격 정보들을 효과적으로 반영하여 ETF의 등락을 예측할 수 있다는 장점이 있다. 하지만 개별 ETF의 과거 정보만 사용할 뿐 서로 다른 ETF 간의 관계를 반영하지 못하는 한계점을 지닌다. 이러한 문제를 해결하기 위해 본 논문에서는 ETF 간의 관계를 반영할 수 있는 모델을 제안한다. 제안 모델은 그래프 구조 학습을 통해 다양한 ETF 간의 관계를 표현하는 그래프를 추론하고, 이를 기반으로 그래프 신경망 모델을 통해 ETF 가격 방향성을 예측한다. 실험을 통해, 제안 모델이 개별 ETF 정보만 사용한 시계열 모델보다 우수한 예측 성능을 보이는 것을 확인하였다.
다변량 시계열 이상 탐지에서의 센서 간 관계 유형을 반영하는 그래프 구조 학습
http://doi.org/10.5626/JOK.2024.51.3.236
수처리 시스템이나 스마트 팩토리 등 다양한 분야에서 시스템을 모니터링하기 위해 센서를 사용하여 데이터를 수집하고 있으며, 센서의 측정 데이터로 구성된 다변량 시계열을 분석하여 시스템의 이상 상황을 탐지할 수 있다. 이상 상황을 효율적으로 탐지하기 위해서는 센서 간 형성되는 관계에 대한 정보가 필요하지만, 일반적으로 이러한 정보를 알기 어렵다는 문제가 있다. 선행 연구에서는 이를 해결하기 위해 센서 데이터 간 관계로부터 센서 간 관계 구조를 학습하고 그래프 구조로 나타낸다. 그러나 이 과정에서 그래프 구조에 센서 간 관계 유무만을 반영하며 센서 간 관계의 유형까지는 고려하지 않는다. 본 논문에서는 센서 간의 관계 유형을 반영하여 그래프 구조를 학습하고, 이를 기반으로 다변량 시계열을 분석해 시스템의 이상 상황을 탐지한다. 또한 실험을 통해 다변량 시계열 이상 탐지의 그래프 구조 학습에 있어 센서간 관계 유형을 고려하는 것이 이상 탐지 성능을 향상함을 보인다.
분자 그래프 분류에서의 설명 가능한 인공지능
http://doi.org/10.5626/JOK.2024.51.2.157
인공지능의 발전과 함께 설명 가능한 인공지능의 필요성이 점점 커지고 있다. 최근에는 그래프 신경망 기반의 설명 가능한 인공지능 연구도 활발히 진행되고 있으나, 주로 일반적인 그래프에 초점을 두고 있다. 분자 그래프의 화학적 특성에 의존하는 특징 때문에, 현존하는 기법이 분자 그래프에서도 설명력을 제공할 수 있는지 파악하는 연구의 필요성을 강조한다. 본 논문에서는 분자 그래프에 기존의 기술을 적용하고, 이를 정량적 및 정성적으로 평가하여 설명력을 확인하였다. 더불어 중요한 특성의 비율을 통일한 후의 결과도 검토하여, 설명 가능한 인공지능의 평가 지표 중 하나인 희소성의 중요성을 강조하였다.
그래프 신경망 기반 딥 k-평균 노드 클러스터링
http://doi.org/10.5626/JOK.2023.50.12.1153
최근 그래프 신경망(graph neural network, GNN)을 사용한 그래프 노드 클러스터링(node clustering) 기법들이 활발히 연구되고 있다. 이들 연구 대부분은 GNN으로 노드들을 저차원 벡터들로 임베딩(embedding)한 뒤, 이 임베딩 벡터들을 기존의 클러스터링 알고리즘으로 클러스터링한다. 하지만 이 방식은 GNN을 훈련시킬 때 클러스터링이라는 최종 목표를 전혀 고려하지 않기 때문에 최적의 클러스터링 결과를 낸다고 보기 어렵다. 따라서 본 논문은 k-평균 클러스터링이라는 최종 목표를 고려하여 GNN을 반복적으로 훈련시키고 그 결과로 얻어진 노드들의 임베딩 벡터들로 노드들을 k-평균 클러스터링하는 딥 k-평균 클러스터링 기법을 제안한다. 제안 방법은 GNN을 훈련시킬 때 노드들의 유사도뿐만 아니라 k-평균 클러스터링의 손실까지 고려한다. 실데이터를 사용한 실험 결과 제안 방법은 기존 방법에 비해 k-평균 클러스터링 결과의 품질을 향상함을 확인하였다.
그래프 신경망을 활용한 온라인 의견 사기 탐지
http://doi.org/10.5626/JOK.2023.50.11.985
이 연구는 온라인 플랫폼에서 정보의 신뢰도를 떨어뜨리고 사용자들의 의사결정을 방해하는 의견 사기 문제를 탐지하기 위한 그래프 신경망 모델을 제시하였다. 제안된 모델은 다중 관계로 구성된 온라인 리뷰 그래프에 샘플링 기법을 적용하여 관계 표현을 만들고 이를 중심 노드의 속성과 결합함으로써 사기 여부를 예측한다. 실제 데이터를 대상으로 한 실험 결과, 이 방법은 기존의 최신 방법들보다 더 정확하면서도 더 빠르며, 주요 관계에 대한 설명력도 제공할 수 있다. 이 연구는 신경망 기반 모델의 일반적인 단점인 설명가능성의 어려움을 완화하고 실무자들로 하여금 분석 결과를 의사결정에 활용할 수 있도록 하였다.
능동 학습 기반 교차 프로젝트 결함 예측 시스템에 대한 개선 연구
http://doi.org/10.5626/JOK.2023.50.11.931
본 연구는 교차 프로젝트 결함 예측을 위한 능동 학습 기반 시스템에 대한 실용적 개선 방법을 제안한다. 교차 프로젝트 결함 예측의 성능을 실용적으로 높이기 위해 능동 학습을 적용하는 연구가 시도된 바 있다. 그러나 능동 학습 대상 선정과 결함 예측에 수제 특징을 입력으로 사용하는 전통적 기계학습 모델을 사용했기 때문에 특징 추출에 많은 비용이 들고 성능 한계가 있었으며, 입력 프로젝트의 선택에 따른 성능 편차 문제가 남아있었다. 본 연구에서는 다음의 방법을 제안한다. 첫째, 모델 구축 비용을 낮추고 예측 성능을 높이기 위해 소스 코드를 입력으로 사용할 수 있는 딥러닝 모델을 사용한다. 둘째, 딥러닝 모델로 능동 학습 대상을 선정하기 위한 방법으로 베이지안 합성곱 신경망을 적용한다. 셋째, 다중 프로젝트들로부터 학습 데이터 세트를 자동 추출하는 방법을 적용한다. 본 연구를 7개 오픈 소스 프로젝트들에 적용한 결과, 기존 연구 대비 평균 13.58% 개선된 예측 성능을 확인하였다.