디지털 라이브러리[ 검색결과 ]
구면 파노라마 영상을 위한 표본 기반 영상 인페인팅
평면 대 평면 간 기하 변환에 기반을 두는 기존 영상처리 기술들은 구면 파노라마 영상에서의 픽셀 좌표에는 적용될 수 없다. 본 논문에서는 평면 영상을 전제로 개발된 표본 기반 영상 인페인팅 기술을 구면 파노라마 영상에 적용할 수 있는 방법을 제안한다. 구면 영상에서 위도에 따라 다른 표본을 추출하는 방법을 이용하여 평면 영상에서의 표본 기반 인페인팅을 구면 파노라마 영상에서도 동일하게 사용할 수 있도록 하는 것이 본 논문에서 제안하는 방법의 목적이다. 기존의 표본 기반 영상 인페인팅은 정사각형 표본을 그대로 사용하기 때문에 좌표계가 다른 구면 파노라마 영상에서는 사용할 수 없다. 본 논문에서는 구면 파노라마 영상의 위도에 따른 각기 다른 모양의 표본을 취득한 후 이를 정사각형으로 균일화하는 방법을 사용한다. 이후 균일화된 표본을 이용하여 표본 기반 영상 인페인팅을 수행하는 방법으로 영상을 복원한다. 실험 결과 본 논문에서 제안하는 방법은 구면 파노라마 영상에서 표본 기반 영상 인페인팅을 성공적으로 수행함을 확인하였다.
구면 파노라마 영상에서의 평면 패턴의 기하 변환 추정
핀홀 카메라 모델을 가정하는 기존 영상처리 기술의 평면 대 평면 간 기하 변환은 구면 파노라마 영상에서의 픽셀 좌표에는 적용될 수 없다. 본 논문에서는 구면 파노라마 영상과 평면 영상의 특징점정합 쌍이 주어졌을 때 두 영상에 포함된 평면 기하 변환 관계를 추정하는 방법을 제안한다. 정합된 특징점들로부터 평면 패턴의 위도 변화, 경도 변화, 회전 변화, 크기 변화 인자를 모두 구하여 기하 변환을 추정하는 것이 본 논문에서 제안하는 방법의 목적이다. 평면 영상을 구면 파노라마 영상에 투영하게 될 경우 두 번의 비선형 좌표계 변환이 포함되어 기하 변환식이 복잡하다. 제안하는 방법은 좌표 변환뿐만 아니라 변환에 내재된 각 인자들을 모두 알아낼 수 있는 것이 장점이다. 실험 결과 제안하는 방법은 약 1%의 오차 수준에서 기하 변환을 추정하였고 위도 및 회전 등 주요 변형 요인에 영향을 거의 받지 않았다.
스케일 공간 도함수를 이용한 강인한 기술자 생성 기법
멀티미디어 데이터의 생산과 소비가 증가함에 따라 이를 효과적으로 처리하고 관리하는 데 필요한 이미지 검색 기술의 필요성이 점차 커지고 있다. 본 논문에서는 이미지 검색 기법 중 최근 주목 받고 있는 특징점 기반의 이미지 검색 방법에서 기존 보다 강인한 기술자를 생성하는 방법을 제안한다. 즉, 스케일 공간 이미지에 더하여 1차 및 2차 미분 이미지를 기술자 생성에 이용함으로써 기술자의 변별력을 향상시키도록 한다. 제시되는 기술자는 다양한 영상 변환을 포함하는 공용 데이터 셋을 이용하여 성능 평가를 수행하였다. 새로운 기술자는 길이가 약간 증가하는 단점이 있으나 특징점 매칭에 있어서 현저한 성능 향상을 보인다.
스케일 공간 고차 미분의 정규화를 통한 특징점 검출 기법
이미지 검색 및 매칭에 사용되는 SIFT 기법은 다양한 이미지 변화 요인들에 대하여 강인한 특성을 가지고 있는 것으로 알려져 있다. SIFT 기법은 기존의 픽셀 단위의 변화량에 의존한 특징점 추출방식을 확장하여 스케일 공간에서의 변화량 분석을 통한 특징점 추출 방식을 제시하였으며, 이렇게 추출된 특징점들의 강인함은 그 동안 여러 실험을 통하여 입증되었다. 또한, 최근에는 스케일 공간 변화량 분석에 있어서 기존의 SIFT 기법을 확장하여 고차 미분 계수를 이용한 특징점 추출 방법도 소개되었다. 본 논문에서는 이러한 스케일 공간의 고차 미분에서의 정규화를 통한 보다 강인한 특징점 추출 기법을 소개하고 이러한 특징점들의 강인함을 이미지 검색 실험을 통하여 입증한다.